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A B S T R A C T

The success of 3D food printing (3DFP) relies heavily on material printability, defined by smooth extrusion and 
structural stability. However, many food materials struggle to meet these criteria, leading to challenges in 
shaping and printing precision. Conventional evaluation methods for evaluating key printability indicators like 
water holding capacity (WHC) and gel strength are often costly, require specialized equipment, and are 
destructive. To overcome these limitations, this study proposes a non-destructive, computer vision-based 
approach for printability evaluation using digital images. Grayscale images were analyzed to extract texture 
features based on the gray-level co-occurrence matrix (GLCM). These texture features, along with additive 
concentration data, then served as input for a Random Forest model. Three distinct models were developed: top 
view (TOP), side view (SIDE), and combined view (TS). The TOP model demonstrated the highest predictive 
performance for WHC (MAE = 0.674, R2 = 0.875, RMSE = 0.831), while the TS model showed superior accuracy 
for gel strength (MAE = 0.391, R2 = 0.691, RMSE = 0.556). This novel approach enables rapid, automated, and 
cost-effective assessments, thereby significantly aiding in 3DFP optimization and the development of customized 
food products.

1. Introduction

Three-dimensional (3D) printing is a technology that constructs 
complex solid models by incrementally layering materials from the 
bottom upward, following predefined digital designs under precise 
computer control. This technology has been widely employed in various 
industries, such as medicine, aerospace, and food processing (Li, W. 
et al., 2025). Three-dimensional food printing (3DFP) enables the pro
duction of complex and customized food structures that are difficult to 
achieve through conventional methods (Yang et al., 2017). Also, 3DFP 
supports personalized food production by enabling the use of diverse 
ingredients and the development of health-oriented meals tailored to 
individual dietary needs (Lee, 2021; Wu et al., 2024).

Due to the inherently complex system of food, 3DFP often encounters 
difficulties in meeting printability standards, resulting in challenges 
such as poor product shaping, reduced structural stability, low printing 

precision, and decreased efficiency (Cao et al., 2022; Tian et al., 2021). 
The printability of a material determines its suitability for 3DFP and 
refers to its ability to be smoothly and continuously extruded through a 
nozzle under specific force while retaining its shape after extrusion, 
supporting its weight throughout the printing process, and maintaining 
structural stability without deformation once printing is complete (Cao 
et al., 2022; Outrequin et al., 2023). Since the rheological properties of 
food inks are critical determinants of printability, research has focused 
on characterizing these properties and optimizing formulations to 
enhance printability (Cao et al., 2022; Ma et al., 2023).

Conventional methods for evaluating printability in relation to the 
physicochemical and rheological properties include the analysis of 
water holding capacity (WHC), texture and gel strength, and micro
structural analysis using scanning electron microscopy (Lu et al., 2024; 
Wei et al., 2024). While these methods provide reliable and precise as
sessments of 3DFP printability, they have several limitations. They 
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require significant time and resources with specialized equipment and 
skilled personnel. Also, they often involve additional steps such as 
point-by-point analysis or destructive sample homogenization. These 
constraints make them unsuitable for automation and limit the reuse of 
processed samples (Mutlu et al., 2011; Yam and Papadakis, 2004). 
Consequently, there is a clear need to develop more efficient, automated 
approaches for assessing the printability and quality of 3DFP products.

Recently, advanced technologies such as machine learning, deep 
learning, and computer vision (CV) have been adopted in the evaluation 
of automated printability in 3D printing. These technologies have been 
applied to a variety of cases, including the prediction of the printability 
of biomaterials, the prediction of processability and fabrication condi
tions for pharmaceutical formulations, and the evaluation of the print
ability of concrete-based materials (Elbadawi et al., 2020; Liu, C. et al., 
2022; Marcucci et al., 2023). Among these technologies, CV, an inter
disciplinary field integrating informatics, mathematics, and image pro
cessing, enables computers to analyze and interpret visual information 
such as images and video (Paraskevoudis et al., 2020). In particular, CV 
has gained increasing recognition as a core technology for quality 
assessment and process optimization in 3D printing. CV-based systems 
have been effectively utilized to monitor print quality in real time and to 
detect and correct errors occurring during the printing process 
(Paraskevoudis et al., 2020). Moreover, hardware and software frame
works that incorporate layer-wise analysis, defect detection, and auto
matic correction functions have also been proposed (Petsiuk and Pearce, 
2020).

Research has also actively explored precise control of the extrusion 
characteristics of food inks in 3DFP. For example, researchers have 
utilized machine learning to measure the instantaneous extrusion rate 
and filament width under constant pressure or force and implemented 
feedforward control of nozzle movement in pneumatic 3D food printers 
(Ma et al., 2023). A recent study integrated image analysis with machine 
learning, demonstrating that the printability of polysaccharide-based 
food inks could be accurately predicted based on their composition 
and rheological properties, thereby significantly expanding the potential 
for automation in food manufacturing processes (Lu et al., 2023).

Despite these technological advances, studies evaluating the print
ability of food materials using image-based features remain remarkably 
limited in their scope, often focusing on extrusion parameters or general 
material properties. Crucially, research directly linking the quantitative 
analysis of visual texture features from printed structures of protein- 
based food inks to critical functional attributes like WHC and gel 
strength is notably scarce. This study proposes a proactive methodology: 
rather than merely detecting post-print defects, we leverage sophisti
cated digital image analysis to predict printability outcomes and struc
tural quality before widespread issues arise, thereby enabling real-time 
optimization and overcoming the inherent limitations of conventional, 
reactive assessment methods.

To establish CV-based printability evaluation, we employed a so
phisticated methodology that goes beyond simple image analysis. 
Quantitative visual texture features, extracted meticulously from digital 
images of printed structures, were combined with additive concentra
tion data. This rich, multi-faceted dataset was then used to train a 
Random Forest (RF) model. This approach enabled the simultaneous and 
precise prediction of critical printability indices like WHC and gel 
strength, thereby revealing a nuanced quantitative relationship between 
additive composition and printing performance. Unlike conventional, 
labor-intensive, and often destructive physical measurements, our data- 
driven model offers exceptional efficiency and accuracy, providing a 
superior tool for optimizing 3DFP processes. Furthermore, to enhance 
the model’s transparency and provide visual insights into how texture 
features influenced the model’s predictions, Shapley Additive Explana
tions (SHAP) analysis was conducted.

Surimi was selected as the foundational model material for this 
methodology, as it is a stabilized concentrate of myofibrillar proteins, 
characterized by its high protein and low-fat content. It is produced by 

washing and dehydrating deboned fish meat and is widely used as a key 
raw material in various processed seafood products such as fish cakes 
and fish sausages (Kim et al., 2022; Li et al., 2023). However, with 
growing consumer demand for enhanced nutritional value and 
customized product appearance, conventional surimi products face 
limitations in achieving personalized shapes and functional attributes. 
To overcome these challenges, 3D food printing has emerged as a 
promising alternative. Due to its homogeneous and highly viscous 
gel-forming properties, surimi demonstrates excellent structural support 
after extrusion, making it a suitable material for 3D food printing ap
plications (Dong et al., 2020). Nevertheless, its physicochemical prop
erties are highly sensitive to factors such as WHC and hydrogen bonding 
interactions, which can significantly affect printing performance (Li 
et al., 2023). Considering surimi’s intricate properties and the limita
tions of conventional evaluation methods, there’s a growing need for a 
non-destructive, quantitative, and efficient approach to assess the 
printability of protein-based food inks.

In this study, we developed a CV-based regression model to predict 
the WHC and gel strength of printed surimi ink, providing an efficient 
and automation-compatible alternative to conventional evaluation 
methods (Fig. 1). Specifically, we first investigated the printability of 
surimi as influenced by the addition of NaCl and TGase. Second, we 
analyzed the WHC and gel strength of surimi ink using conventional 
methods. Finally, we applied texture features extracted from digital 
images, along with additive concentration data, to an RF model for the 
simultaneous prediction of WHC and gel strength, thereby revealing the 
quantitative relationship between additive composition and printability 
indices.

2. Materials and method

2.1. Materials

For surimi, frozen Scomberomorus niphonius fillets were purchased 
from Garyon Seafood Co., Ltd. (Busan, South Korea) and stored at −
18 ◦C. Sodium chloride (NaCl) and transglutaminase (TGase), used as 
additives in surimi ink, were obtained from CJ Corp. (Incheon, South 
Korea) and Ajinomoto Co., Inc. (Tokyo, Japan), respectively.

2.2. 3DPF of surimi ink

To prepare surimi ink, the frozen fillets were thawed in water for 30 
min and then rinsed, dried, trimmed, and minced using a blender 
(HR2041/01, Philips, Netherlands) for 1 min. NaCl was incorporated at 
concentrations ranging from 0.5–4 % (w/w) of the surimi weight, fol
lowed by the addition of ice water at 15 % (w/w). The samples were then 
mixed with TGase at concentrations ranging from 0.1–0.4 % (w/w), also 
based on the surimi weight. After blending the surimi mixture for 3 min, 
it was transferred into a plastic extruder tube.

For 3DFP, a SMART3D FoodBot (Oseong System Co., Ltd., South 
Korea) was used. Fig. 2 illustrates the hardware setup of the 3D printer 
employed in this study. A star-shaped model (60 × 60 × 12 mm3) was 
designed in Tinkercad (Autodesk Inc., San Rafael, CA, USA) and saved as 
an STL file for slicing. The slicing was performed using Slic3r software, 
which generated a G-code specifying material deposition paths and 
printing parameters. This G-code was then uploaded to the printer via 
Repetier-Host (version 4.0.1, Hot-World GmbH & Co. KG, Willich, 
Germany), enabling precise control of nozzle movement, deposition 
speeds, and extrusion rates, ensuring reliable printing results. All ex
periments were conducted at room temperature, and the optimized 
printing conditions, determined through preliminary trials, are provided 
in Table 1.

2.3. Analysis of water holding capacity (WHC)

For WHC analysis, the 3D-printed surimi required post-processing, 
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including heating and cooling (Fig. 1). Samples were heated in a pre
heated water bath at 40 ◦C for 40 min, then further heated at 90 ◦C for 
20 min. After cooking, the surimi gel was rapidly cooled on ice and 

refrigerated overnight at 4 ◦C prior to analysis. The WHC of surimi was 
evaluated using a previously reported method with some modifications 
(Cao et al., 2022). A 4.0 g sample was excised from the center of the 
post-processed surimi, wrapped in filter paper, and placed into a 50 mL 
conical centrifuge tube lined with several layers of blotting paper at the 
bottom. The samples were centrifuged at 4000 rpm for 10 min at 4 ◦C 
using a centrifuge (1580R, Labogene Co., Ltd., Korea). After centrifu
gation, the supernatant was removed, and the sample weight was 
measured. WHC was determined by calculating the percentage of water 
removed from the sample during centrifugation, relative to its initial 
weight, which was obtained by weighing the supernatant. WHC is 
defined by Eq. (1): 

WHC(%)=100 ×

(
m2

m1

)

(1) 

where m1 represents the weight of the sample before centrifugation, and 
m2 denotes the weight of the sample after centrifugation.

2.4. Analysis of gel strength

The gel strength of the post-processed sample was evaluated at room 
temperature using a texture analyzer (CR-500DX-L, SUN SCIENTIFIC 
CO., LTD, Tokyo, Japan). Following extensive preliminary experiments, 
a deformation speed of 2 mm/s was applied during both the pre-test and 
post-test phases. The 3D-printed samples exhibited considerable vari
ability in surface characteristics and internal infill structures due to 
differing concentrations of salt and transglutaminase. Consequently, 
these structural heterogeneities often led to uneven resistance during 
probe penetration. For instance, when the probe speed was too slow, it 
tended to dwell on structurally weak regions, resulting in excessive 

Fig. 1. Overview of printability measurement in 3DFP.

Fig. 2. Hardware configuration: Syringe pump controls material flow for 
consistent extrusion; Heating barrel maintains optimal temperature for smooth 
extrusion; Print plate provides a heated base for proper material adhesion; 
Nozzle ensures accurate extrusion, affecting print quality and speed.

Table 1 
3D extrusion printing parameters.

Parameter Value

Nozzle diameter 1.5 mm
Layer height 2.0 mm
Infill density 80 %
Infill pattern Linear
Nozzle speed 15 mm/s
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deformation and increased measurement variability. Conversely, higher 
speeds limited adequate contact between the probe and sample surface, 
compromising measurement accuracy. Therefore, among the tested 
conditions, a speed of 2 mm/s consistently yielded the most stable and 
reproducible results across all samples. The breaking force (N) and 
penetration distance (mm) were measured using a cylindrical probe 
with a 5 mm diameter. The trigger mode was set to automatic, and each 
test was conducted in triplicate to ensure consistency. Gel strength was 
calculated as shown in Eq. (2): 

Gstrength = Fbreaking⋅Ddeformation (2) 

where Fbreaking indicates the breaking force, Ddeformation denotes the 
deformation, and Gstrength represents the gel strength.

2.5. Establishment and evaluation of a predictive model for printability

Fig. 3 illustrates the framework for quantitative modeling of 3DFP 
printability. Surface texture features are extracted through image pro
cessing, were combined with salt and TGase concentrations as inputs for 
the RF model. This model predicts WHC and gel strength. The perfor
mance of the Top view (TOP model), Side view (SIDE model), and the 
combined TS model were compared to identify the optimal predictive 
model.

2.5.1. Image acquisition and processing
All image processing algorithms were developed and implemented in 

Python 3.8.10 to evaluate the surface characteristics of 3D printed su
rimi samples. Images were acquired using an iPhone 12 at a resolution of 
2532 × 1170 pixels, with the samples placed on white parchment paper 
to ensure a standardized and uniform background. For the top-view 
images, the camera lens was positioned approximately 12 cm above 
the sample surface and oriented perpendicularly. For the side view im
ages, the lens was aligned orthogonally to the sample’s side at a distance 
of approximately 10 cm. To maintain data reliability and consistency, 
samples affected by printing interruptions, such as nozzle clogging or 
ink shortages, were excluded from the imaging procedure.

The captured RGB images were converted to grayscale to facilitate 
texture analysis. Denoising techniques were applied to minimize noise 
while preserving structural details and edges. To improve texture fea
tures and contrast, an adaptive mean adjustment method was employed 

by dividing the image into 3 × 3 non-overlapping blocks and normal
izing the pixel values within each block. Additionally, Gaussian 
smoothing was applied to enhance texture uniformity and highlight 
local variations.

The region of interest (ROI) was precisely delineated by applying 
Otsu thresholding to the binary image, followed by contour extraction. 
This approach ensured that the analysis focused solely on the relevant 
surface of the sample, effectively excluding the background regions. 
Subsequently, gray level co-occurrence matrix (GLCM) analysis was 
performed to quantify texture features such as contrast and correlation, 
which were then used to assess key surface properties.

2.5.2. Extraction of texture feature using GLCM
The GLCM is a widely used method for analyzing and quantifying 

texture in images (Haralick et al., 1973). It determines the frequency of 
specific gray-level intensity pairs occurring in a defined spatial rela
tionship, characterized by both distance and direction, thereby 
capturing the spatial properties of the texture. Represented as a sym
metric square matrix, each element in the GLCM corresponds to the 
co-occurrence frequency of gray-level pairs between a reference pixel 
and its neighboring pixel. The computed co-occurrence frequencies are 
then normalized to probabilities, as expressed in Eq. (3): 

P(i, j) =
Nij

∑m− 1

i=0

∑m− 1

j=0
Nij

(3) 

where P(i, j) represents the probability that the reference pixel and its 
neighboring pixel have gray levels i and j, respectively, Nij denotes the 
number of co-occurrences where the gray levels are i and j, and 
∑m− 1

i=0
∑m− 1

j=0 Nij represents the total number of co-occurrences in the 
GLCM.

GLCM enables the extraction of critical texture features, including 
Contrast, Correlation, Entropy, Homogeneity, and Energy, which 
quantitatively describe texture characteristics. In this study, the GLCM 
was constructed locally for each window within the ROI to capture 
localized texture variations. Texture feature extraction was automated 
using a Python-based algorithm developed specifically for this purpose, 
ensuring precise and efficient analysis of the image data. To prevent 
certain features from dominating the classifier due to their scale, all 
features were standardized during the training process.

Fig. 3. Quantification modeling framework for printability in 3DFP.
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Contrast represents the local variation in texture. Higher values 
indicate greater texture variation, which is calculated by squaring the 
difference in gray levels between the reference pixel and its neighboring 
pixels. It is mathematically represented as follows: 

Contrast =
∑m− 1

i=0

∑m− 1

j=0
(|i − j|)2P(i, j) (4) 

where |i − j|2 represents the squared difference between the grayscale 
value of the reference pixel i and that of the neighboring pixel j, 
assigning greater weights to larger differences. m denotes the total 
number of grayscale levels utilized in the image.

Correlation describes the linear relationship in the texture. It mea
sures how similar the texture is in horizontal and vertical directions. It 
can be defined mathematically as follows: 

Correlation =

∑m− 1

i=0

∑m− 1

j=0
(i − μi)

(
j − μj

)
P(i, j)

σi ⋅ σj

(5) 

where (i − μi) and 
(

i − μj

)
represent the deviations of the grayscale 

values i and j from their respective means μi and μj quantifying the linear 
dependence between pixel intensities. The terms μi and μj denote the 
mean grayscale values of the reference and neighboring pixels, respec
tively, while σi and σj are their corresponding standard deviations, 
measuring the variability in grayscale values. The product σi⋅ σj serves as 
a normalization factor, ensuring that the correlation is dimensionless 
and constrained within the range [− 1, 1].

Entropy quantifies the complexity of the texture’s information. 
Higher entropy values indicate greater uncertainty and diversity in the 
texture. It is formulated mathematically as follows: 

Entropy = −
∑

i

∑

j
P(i, j)⋅log(P(i, j) + ε) (6) 

where log(P(i, j)+ε) represents the logarithm of P(i, j), with a small 
constant ε introduced to prevent undefined values when P(i, j) = 0. This 
modification ensures numerical stability during computation. 

∑
i
∑

j 

denotes the summation over all possible grayscale levels i and j in the 
GLCM. This ensures that all pixel pair occurrences in the texture are 
considered when calculating entropy.

Energy measures the uniformity of the texture, with higher values 
indicating a more homogeneous pattern. It is mathematically defined as 
follows: 

Energy =
∑m− 1

i=0

∑m− 1

j=0
P(i, j)2 (7) 

Homogeneity, also known as Inverse Difference Moment, quantifies 
the closeness of gray levels within the texture. It is calculated as: 

Homogeneity =
∑m− 1

i=0

∑m− 1

j=0

P(i, j)
1 + |i − j| (8) 

2.5.3. Training of CV-based model using machine learning
The RF algorithm, implemented using Python 3.8.10, was integrated 

with CV-based image processing to predict the printability of 3D-printed 
surimi samples. RF was chosen for its robustness and versatility in 
handling high-dimensional data and noisy features. As an ensemble 
learning model, RF aggregates multiple decision trees to map input data 
to output values. It is widely applied to regression problems, where the 
output is a continuous value, and classification problems, where the 
output is a discrete class. By averaging predictions (for regression) or 
voting (for classification), RF enhances both predictive accuracy and 
generalization performance (Breda et al., 2024). A key advantage of RF 
is its ability to assess the relative importance of input variables, enabling 
quantitative analysis of their contributions. Its embedded bagging 

mechanism generates multiple bootstrap samples and combines pre
dictions, thereby reducing overfitting while maintaining model stability 
(Fukuda et al., 2014).

2.5.4. Printability modeling
To address the issue of multicollinearity, Variance Inflation Factor 

(VIF) analysis was conducted. The input variables included TGase con
centration, salt concentration, and GLCM-based surface texture features 
extracted from the images. Variables with VIF values exceeding 10.0 
were removed to enhance model robustness. The refined dataset was 
then used to predict printability-related parameters, such as WHC and 
gel strength. The input variables for the RF model consisted of TGase 
concentration, salt concentration, and five GLCM-based surface texture 
features—Contrast, Correlation, Entropy, Homogeneity, and Energy.

The dataset was collected from three different perspectives: top view, 
side view, and a combination of both (Top view + Side view, TS model). 
Based on these perspectives, three RF models were developed and 
designated as the TOP, SIDE, and TS models, respectively. RF compu
tations employed bootstrap resampling to construct multiple decision 
trees, while variable importance was assessed based on mean squared 
error (MSE) reduction. Specifically, the importance of each variable was 
determined by aggregating the MSE reductions from all splits involving 
that variable across all decision trees.

2.5.5. Model evaluation
To evaluate the performance of the printability prediction model, the 

Mean Absolute Error (MAE), Coefficient of Determination (R2), and Root 
Mean Square Error (RMSE) were used as the primary evaluation metrics. 
A lower MAE and RMSE values, as well as an R2 value closer to 1, 
indicate higher prediction accuracy. These metrics are calculated using 
the following equations: 

MAE =
1
N

∑N

i=1
|yi − ŷi| (9) 

R2 = 1 −

∑N

i=1
(yi− ŷi)

2

∑N

i=1
(yi − y)2

(10) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

⋅
∑N

i=1
(yi − ŷi)

2

√
√
√
√ (11) 

here, yi represents the observed value, ŷi is the predicted value, y in
dicates the mean of the observed values, and N denotes the number of 
samples in the dataset.

2.5.6. Model interpretation with the SHAP method
In this study, the SHAP (Shapley Additive Explanations) method 

(Lundberg and Lee, 2017a) was introduced to complement the inter
pretation of a regression-based RF model developed to predict physical 
properties—namely, WHC and gel strength—of 3D-printed surimi 
samples. SHAP offers an interpretable framework by computing Shapley 
values, which quantify the extent to which each input feature contrib
utes to the predicted continuous outcome. The Random Forest model 
provides a global assessment of feature importance by averaging re
ductions in MSE across all decision trees. These global importance scores 
are helpful in identifying features that contribute most, on average, to 
model performance across the entire dataset. However, they do not 
capture how individual features affect specific predictions. In this 
context, SHAP was additionally employed to address this limitation and 
to enable instance-level interpretability.

SHAP is grounded in cooperative game theory (Lundberg and Lee, 
2017b), wherein the marginal contribution of each feature is calculated 
by comparing model outputs with and without the feature across all 
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possible feature subsets. This is formalized using an additive linear 
model: 

g(ź ) = ϕ0 +
∑M

i=1
ϕi źi (12) 

where ϕi denotes the Shapley value, z
́
i indicates the presence of the 

feature, and M represents the total number of input variables.
In this study, SHAP values were computed based on a RF model 

trained with GLCM-derived texture features, and the implementation 
was carried out using the Python SHAP package. The resulting SHAP 
values were visually mapped onto both top and side view images to 
identify the local regions that contributed most significantly to the 
prediction of WHC and gel strength.

2.6. Statistical analysis

All experiments were conducted in triplicate, and the results were 
expressed as mean ± standard deviation. Statistical analysis was per
formed using R software (version 4.4.1), applying one-way analysis of 
variance (ANOVA) followed by Duncan’s multiple range test. Differ
ences were considered statistically significant at p < 0.05.

3. Results and discussion

3.1. Investigation of the printability performance of surimi with the 
addition of NaCl and TGase

Since the addition of NaCl and TGase has been reported to affect the 
3D printability in surimi-based 3DFP, various concentrations of NaCl 
(0.5–4 %) and TGase (0–0.4 %) were incorporated into surimi ink to 
evaluate its printability performance. When only 0.5 % NaCl was added 

Fig. 4. Printing quality of surimi gels under varying NaCl and TGase concentrations. (a–e) Actual printed structures at different NaCl concentrations (a = 0.5 %, b =
1.0 %, c = 2.0 %, d = 3.0 %, e = 4.0 %), each with TGase levels ranging from 0 % to 0.4 % (w/w).
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without TGase, the printed surimi exhibited extremely low structural 
stability, tending to collapse and failing to maintain its shape (Fig. 4a). 
In contrast, the addition of 1 % or more NaCl enabled the printed surimi 
to retain its basic shape even in the absence of TGase, with a general 
improvement in structural integrity observed (Fig. 4b–e). This trend 
aligns with previous research by Cao et al. (2022), which demonstrated 
that low NaCl content increased storage modulus and hindered extru
sion, whereas excessive NaCl reduced printing precision. Both findings 
are consistent with the observations made in the present study.

While extrusion irregularities and poor interlayer adhesion were 
observed across most NaCl concentrations when TGase was absent, the 
addition of TGase led to denser printed structures with smoother sur
faces and fewer cracks. This improvement appears to be due to covalent 
cross-linking between myosin molecules induced by TGase, which re
inforces the protein network and enhances the structural stability of 
printed constructs (Yu et al., 2022). Although the addition of TGase 
contributes to improving the printability of surimi, adding 0.4 % TGase 
can cause inconsistent and rough surfaces of printed products. This 
adverse effect was most pronounced under the 4 % NaCl and 0.4 % 

TGase condition (Fig. 4e). These findings are consistent with previous 
reports indicating that MTGase concentrations of 0.2 % and 0.3 % yield 
optimal printed structures, whereas concentrations exceeding 0.4 % 
result in a loss of extrusion uniformity and print consistency (Dong et al., 
2020).

In this study, more than 1 % NaCl or at least 0.1 % TGase was 
required to ensure post-printing stability, showing improved shape 
retention and internal pattern fidelity, closely matching the 3D printing 
model. Notably, the printed surimi exhibited the most favorable print
ability, maintaining smooth and stable external appearances when 0.5 % 
or 1 % NaCl with 0.3 % TGase and 2 % NaCl with no TGase were added 
to the surimi ink (Fig. 4a–c). Subsequently, surimi samples with various 
printability were used to evaluate WHC and gel strength.

3.2. Analysis of WHC and gel strength to evaluate printability of surimi 
ink

Among the various parameters used to assess the quality of food gels, 
WHC and gel strength are widely recognized as key indicators, as they 

Fig. 5. WHC (a) and gel strength (b) of 3D-printed surimi gels formulated with five levels of NaCl (0.5 %, 1 %, 2 %, 3 %, and 4 %) and corresponding TGase 
concentrations (0 %, 0.1 %, 0.2 %, 0.3 %, and 0.4 % w/w).
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objectively reflect the physical properties and overall quality of printed 
structures (Li, H. et al., 2025a). Previous studies have also examined the 
relationships among WHC, rheological properties, and printability 
within surimi–starch systems. In particular, cluster analysis revealed 
that starch type and concentration, WHC, and rheological behavior are 
strongly associated with 3D printability (Liu, Y. et al., 2022). Accord
ingly, this study analyzed WHC and gel strength of surimi samples with 
various printability levels for evaluating the quality and physical prop
erties of the printed structure.

As shown in Fig. 5a, the WHC exhibited a statistically significant 
increase with increasing NaCl concentration (p < 0.05). This finding is 
consistent with previous studies. For instance, Cao et al. (2022) reported 
that higher NaCl levels enhance the water-holding capacity of surimi 
gels by reducing water mobility and reinforcing the overall gel network 
structure. Similarly, Wang et al. (2018) demonstrated that WHC 
significantly increases with NaCl addition, attributing this effect to the 
binding of chloride ions to myofibrillar proteins, which elevates elec
trostatic repulsion between filaments and consequently enhances the 
affinity of proteins for water.

In most NaCl concentration conditions, the addition of TGase 
significantly increased the WHC (p < 0.05), suggesting that TGase en
hances water-holding capacity by promoting the formation of a more 
stable and compact three-dimensional gel network (Yu et al., 2022). 
Additionally, Cando et al. (2016) reported that TGase facilitates protein 
cross-linking, leading to the formation of a looser protein matrix capable 
of entrapping more water, thereby improving the WHC of low-salt 
surimi.

Meanwhile, under the condition of 2 % NaCl, the highest WHC was 
observed in the absence of TGase. This may be attributed to the ability of 
NaCl alone to enhance the swelling of myofibrillar proteins through 
chloride ion binding, which increases electrostatic repulsion between 
filaments and, in turn, improves the water affinity of proteins, resulting 
in a more stabilized water-retaining network (Wang et al., 2018).

Surimi gels prepared with 1 % NaCl and 0.3 % TGase, 0.5 % NaCl and 
0.3 % TGase, and 2 % NaCl without TGase exhibited high WHC. These 
samples also demonstrated smooth extrusion through the nozzle during 
printing, along with high layer-stacking precision and overall print 
quality. These findings suggest that high WHC contributes to improved 
structural stability and surface uniformity, indicating a close association 
between WHC and printability in surimi-based systems. In contrast, 
although the samples prepared with 3 % NaCl and 0.3 % TGase, and 4 % 
NaCl and 0.2 % TGase also showed high WHC values, surface pores were 
observed in the printed constructs. This indicates that the relationship 
between WHC and printing performance is not strictly linear. In 
particular, at higher concentrations of NaCl and TGase, elevated WHC 
does not necessarily translate into optimal print quality. A similar phe
nomenon was also observed in the study by Cao et al. (2022).

Gel strength is a key indicator for assessing the mechanical proper
ties of surimi gels and is closely associated with the structural stability of 
the final product as well as its printing properties (Sun et al., 2025). 
Accordingly, gel strength plays a critical factor in determining the 
self-supporting capability of 3D-printed structures and directly in
fluences the printability of surimi-based materials (Dong et al., 2019).

As shown in Fig. 5b, even in the absence of TGase, gel strength 
progressively increased with higher concentrations of NaCl. This trend is 
consistent with the findings reported by Cao et al. (2022) and Wang 
et al. (2018), both of which demonstrated a significant enhancement in 
the gel strength of surimi with increasing NaCl content. Notably, the gel 
strength profile observed in the NaCl-only groups in the present study 
closely resembled that reported by Cao et al. (2022). The increase in gel 
strength can be attributed to the swelling of myofibrillar proteins, which 
enhances intermolecular interactions among protein molecules, an ef
fect promoted by the presence of NaCl (Cao et al., 2022; Wang et al., 
2018). Such enhancement in gel strength effectively supported the 
self-weight of the printed structures during the 3D printing process and 
contributed to the maintenance of stable three-dimensional forms 

thereafter.
In most NaCl conditions, the incorporation of TGase significantly 

enhanced gel strength (p < 0.05), presumably through the formation of 
ε-(γ-glutamyl) lysine bonds between myosin and actomyosin (Yu et al., 
2022). These covalent cross-links reinforced the protein network and 
facilitated the development of a more robust three-dimensional gel 
structure. However, under the condition of 4 % NaCl, a paradoxical 
decrease in gel strength was observed despite higher TGase concentra
tions. This may be due to excessive isopeptide bond formation, which 
can hinder protein–water interactions, induce water loss, and ultimately 
result in an overly rigid yet brittle gel network (Dong et al., 2020; Wang 
et al., 2018). Moreover, the disruption of protein-water interactions due 
to excessive isopeptide bond formation not only compromised the gel’s 
ability to retain structural integrity but also led to increased water loss, 
resulting in a reduction in WHC. Therefore, the observed paradoxical 
decreases in both gel strength and WHC under high NaCl and TGase 
concentrations can be attributed to these combined effects.

Surimi gels prepared under the conditions of 3 % NaCl with 0.3 % 
TGase and 1 % NaCl with 0.3 % TGase exhibited high gel strength along 
with overall favorable print quality. In contrast, samples formulated 
with 2 % NaCl and 0.4 % TGase, 3 % NaCl and 0.4 % TGase, and 1 % 
NaCl and 0.4 % TGase demonstrated reduced surface quality despite 
their elevated gel strength. A similar trend was observed in the study by 
Cao et al. (2022), where low gel strength resulted in poor printability, 
while excessive gel strength also led to surface defects such as pore 
formation, thereby diminishing print quality. Likewise, visual patterns 
reported by Yu et al. (2022) indicated that under high gel strength 
conditions, the surfaces of printed samples often appeared uneven and 
rough, with such irregularities particularly appearing on the side sur
faces. However, in the present study, although some high–gel strength 
conditions exhibited slightly diminished surface quality, the side-view 
images of the printed samples revealed relatively precise layer stack
ing, suggesting that vertical structural integrity was well maintained.

3.3. Quantification of printability in 3D printed surimi samples

Images of all 75 3D-printed surimi samples were acquired and con
verted to grayscale. A series of image preprocessing steps were then 
applied to define the ROI for each sample. Texture features based on the 
GLCM were extracted from each ROI, and the values were normalized to 
ensure consistency across the dataset. All samples were included in the 
analysis, while representative top view (Fig. 6a) and side view (Fig. 6b) 
images under selected conditions are presented in Fig. 6 to illustrate 
typical surface variations.

To quantitatively predict WHC and gel strength, three RF models — 
the TOP, SIDE, and TS models — were developed using GLCM features 
and additive concentrations as input variables. The dataset was split into 
training (70 %) and test (30 %) subsets to ensure reliable model eval
uation and prevent overfitting.

The results are summarized in Table 2. The TOP model demonstrated 
the highest predictive accuracy for WHC in RF modeling. In the training 
set, it achieved a MAE of 0.510, an R2 of 0.907, and an RMSE of 0.714, 
while in the test set, it yielded a MAE of 0.674, an R2 of 0.875, and an 
RMSE of 0.831 (Fig. 7a). These results indicate that top-view surface 
images effectively capture the relationship with WHC, offering excellent 
predictive performance.

In contrast, both the SIDE model and the TS model failed to capture 
sufficient information related to WHC, resulting in relatively lower 
prediction accuracy. This outcome can be attributed to the inherent 
characteristics of WHC, which is highly dependent on the gel matrix’s 
ability to retain water. Surimi samples with high WHC tend to exhibit 
smoother and glossier surfaces due to the formation of dense and hy
drated gel networks. These visual traits—such as surface flatness, luster, 
and fine crack distribution—are more prominently visible in top-view 
images. Conversely, side views primarily reflect layer-wise stacking 
and interfacial adhesion, which are less indicative of water retention 
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properties. Therefore, top-view imaging provides a more informative 
representation of surface conditions directly linked to WHC-related 
structural properties, offering more relevant visual cues for accurate 
prediction.

For gel strength, the TS model achieved a MAE of 0.460, an R2 =

0.744, and an RMSE of 0.672 on the training set (Fig. 7b). On the test set, 

it recorded a MAE of 0.391, an R2 = 0.691, and an RMSE of 0.556 
(Fig. 7b), where the figure depicts a graph comparing the predicted and 
actual values. Notably, the TS model exhibited the lowest prediction 
errors in terms of MAE and RMSE during testing, indicating strong 
predictive performance. In contrast, while the SIDE model demonstrated 
superior performance during training, it exhibited increased errors on 

Fig. 6. Images from the top and side views. (a)Top view images of samples exhibiting the most pronounced surface changes under the 1 % NaCl condition with 
varying TGase concentrations (0–0.4 %) are presented. These images were converted to grayscale and underwent a series of preprocessing steps to define the ROI for 
each sample, (b) Corresponding side view images under the same conditions are also provided to visually illustrate representative surface variations.
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the test set, suggesting potential overfitting. In addition, although the 
TOP model exhibited the highest R2 values, it showed the largest pre
diction errors in both the training and test sets. Therefore, considering 
prediction accuracy on the test set, the TS model achieved the lowest 
error rates and demonstrated superior generalization capability. These 
findings suggest that incorporating both top and side view information 
more effectively captures the relationship with gel strength.

In the broader context of food quality assessment, various studies 
have explored the integration of machine learning and analytical tech
nologies to enhance food safety and quality (Breda et al., 2024). Among 
these, spectroscopy and hyperspectral imaging (HSI) techniques com
bined with machine learning have been widely used to predict WHC and 
gel strength. Table 3 summarizes major previous studies that utilized 
diverse food materials and analytical techniques for predicting WHC and 
gel strength.

In previous research, for example, HSI has been employed to develop 
a least squares support vector machine (LS-SVM) model for predicting 
the WHC of red meat, which demonstrated high predictive accuracy 
(Kamruzzaman et al., 2016). In addition, a PLS model was developed by 
applying Raman spectroscopy to pork batter to predict WHC, achieving 
a relatively high prediction performance with an R2 value of 0.9611 (Li, 
H. et al., 2025a). For gel strength, a PLS model based on FT-NIR was 
applied to gelatin samples and showed a prediction performance of RPD 
= 1.90 (Duthen et al., 2021). Furthermore, for surimi samples, a PLS 
model based on HSI-VNIR data was applied, achieving an Rp

2 = 0.9315, 
which indicates very high predictive accuracy (Li, H. et al., 2025b).

However, the practical application of these approaches is limited due 
to their reliance on expensive equipment and highly specialized 
personnel. To overcome these constraints, this study proposes a cost- 
effective alternative: a digital image-based model for predicting 3D 
printability. The proposed model enables rapid, non-destructive, real- 
time evaluation; however, several limitations remain. All models 
exhibited a slight decline in predictive performance on the test dataset 
compared to the training dataset, which is a common indication of mild 
overfitting in small datasets (Outrequin et al., 2024). Moreover, the 
model’s predictive accuracy, as indicated by the R2 values, was some
what lower than that of the spectroscopy-based methods listed in 
Table 3. This discrepancy likely stems from methodological differences: 
spectroscopy quantifies the chemical composition directly, while the 
image-based approach adopted in this study evaluates surface texture 
features. Additionally, this study focused solely on texture quantifica
tion and additive concentration, omitting variables such as color histo
grams and shape descriptors.

These findings underscore the potential of image-based models in 

food texture prediction, while also highlighting the need for future 
studies to incorporate additional visual and structural descriptors—such 
as color histograms and shape features—to improve model accuracy and 
generalizability.

3.4. Variable importance and correlation analysis

In this study, RF-based variable importance analysis was employed 
to identify key variables influencing printability, while correlation 
analysis was performed to quantitatively assess the relationships among 
these variables.

For WHC, the RF analysis achieved the highest predictive perfor
mance with the Top view model. As Fig. 7c illustrates, the key variables 
identified included Contrast, Entropy, TGase concentration, and Corre
lation. Among these, Contrast and Entropy, derived from GLCM analysis, 
exhibited the strongest associations with WHC, reflecting variations in 
surface characteristics and the degree of structural order, respectively. 
Notably, Contrast and Entropy ranked among the most influential var
iables, with statistically significant correlations with WHC, as depicted 
in Fig. 7e. Specifically, Contrast demonstrated a significant negative 
correlation with WHC (r = − 0.635, p < 0.001), whereas Entropy 
exhibited a significant positive correlation (r = 0.514, p < 0.001). 
Furthermore, Energy (r = − 0.452, p < 0.001) and Homogeneity (r = −

0.549, p < 0.001) showed significant correlations with WHC. These 
findings underscore the complementary roles of RF and correlation an
alyses in identifying and validating key variables, particularly Contrast 
and Entropy, in WHC prediction. This finding suggests that the devel
opment of a more compact and robust network structure enhances WHC, 
leading to smoother surfaces, reduced cracking, and improved printing 
accuracy. In contrast, surface roughness and printing irregularities can 
be attributed to moisture loss resulting from diminished protein-water 
interactions (Dong et al., 2020; Wang et al., 2018).

For gel strength, the RF analysis exhibited the highest predictive 
performance with the TS model. As depicted in Fig. 7d, the key variables 
identified were Energy, Contrast, Correlation, TGase concentration, and 
NaCl concentration. Among these, Energy demonstrated the highest 
variable importance in the RF analysis, with correlation analysis (Fig. 7f) 
confirming a significant positive correlation with gel strength (r =
0.414, p < 0.001). Contrast emerged as the second most influential 
variable, displaying a significant negative correlation with gel strength 
(r = − 0.358, p < 0.001), further reinforcing the consistency and reli
ability of the RF analysis results. Similarly, for gel strength, higher 
values were associated with improved structural stability, and reduced 
cracking, consistent with findings from previous studies (Dong et al., 
2020; Wei et al., 2024). However, under high salt or TGase conditions, 
3D printing performance was adversely affected.

Although Contrast and Entropy were identified as major predictors 
for WHC, and Energy and Contrast for gel strength, their contributions 
were not strictly linear. Particularly under high salt or high TGase 
conditions, high gel strength was not always accompanied by smoother 
surfaces, indicating that structural compactness does not necessarily 
equate to favorable surface texture. For instance, under the conditions of 
1 % NaCl with 0.4 % TGase and 3 % NaCl with 0.4 % TGase, although 
relatively high gel strength values were achieved, the printed samples 
exhibited irregular surface textures and cracking, as visually confirmed 
in Fig. 4c and e. These findings highlight the context-dependent and 
nonlinear nature of the relationships between GLCM based texture fea
tures and printability outcomes, underscoring the importance of 
modeling approaches like RF that can capture such complexity.

3.5. SHAP-based interpretation of texture feature contributions

In this study, SHAP analysis was employed to interpret the contri
bution of texture features extracted from GLCM-based surface images to 
the prediction of WHC and gel strength. The SHAP visualizations pre
sented in Fig. 8a–c were served as spatial interpretation tools to 

Table 2 
Performance comparison of the TOP, SIDE, and TS models in predicting print
ability (WHC and gel strength) of 3D-printed samples during training and 
testing.

Printability Model Metrics Train Test

WHC TOP MAE 0.510 0.674
R2 0.907 0.875
RMSE 0.714 0.831

SIDE MAE 0.688 0.794
R2 0.838 0.795
RMSE 0.853 0.927

TS MAE 0.695 0.741
R2 0.856 0.801
RMSE 0.837 0.997

Gel strength TOP MAE 0.472 0.497
R2 0.774 0.721
RMSE 0.610 0.619

SIDE MAE 0.350 0.449
R2 0.811 0.690
RMSE 0.435 0.651

TS MAE 0.460 0.391
R2 0.744 0.691
RMSE 0.672 0.556
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Fig. 7. Prediction performance, variable importance, and correlation analysis for WHC and gel strength prediction. (a) Scatter plots comparing the measured and RF- 
predicted values for WHC (TOP model) using both training and test sets, (b) Scatter plots comparing the measured and RF-predicted values for gel strength (TS 
model) using both training and test sets, (c) Feature importance rankings for WHC using the TOP model. (d) Feature importance rankings for gel strength using the TS 
model, (e) Correlation heatmap for WHC with the TOP model, (f) Correlation heatmap for gel strength with the TS model.
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highlight the regions that most influenced the model’s predictions.
In the SHAP visualizations, red regions indicate texture features that 

contribute to an increase in the predicted value, whereas blue regions 
reflect those that contribute to a decrease. The intensity of the color 
corresponds to the magnitude of the feature’s contribution—darker 
shades signify a stronger influence on the model’s prediction.

Fig. 8a and b presents SHAP visualizations for top view samples 
containing 0 % and 0.1 % TGase, respectively, under a 3 % NaCl con
dition. A comparison between the two conditions revealed that as the 
TGase concentration increased, surface roughness and texture patterns 
changed, and the surface areas recognized as important by the model 
also shifted. The distribution of high-contribution regions, indicated in 
red in the SHAP visualization, increased, while blue regions decreased, 
suggesting that TGase-induced surface structural changes altered the 
influence of specific areas on the model’s predictions of WHC and gel 
strength. These changes indicate a shift in the predictive contributions of 
surface features, with the model reinterpreting which regions are most 
relevant as TGase concentration increases.

Fig. 8c shows SHAP interpretation results for a side view sample 
under NaCl 3 % and TGase 0.3 % conditions, where the regions 
contributing to WHC and gel strength predictions differ distinctly. This 

observation reflects that the two quality indicators are predicted based 
on different surface structural features. It indicates that the model uti
lizes different texture information depending on the input direction, 
demonstrating that each quality indicator is learned based on distinct 
visual information. In practice, the TOP model showed the highest 
predictive performance for WHC, while the TS model, combining both 
top and side views recorded the best performance for gel strength. These 
findings can be interpreted as visual validation of the correlation be
tween input directionality and prediction accuracy through SHAP 
analysis. In conclusion, SHAP visualization goes beyond performance 
evaluation by quantitatively presenting how texture-based feature 
contributions are spatially distributed for each quality indicator. This 
provides meaningful insights for understanding the relationship be
tween surface structure and physicochemical properties of 3D-printed 
surimi.

Overall, smoother surfaces were associated with improvements in 
WHC and gel strength. However, SHAP analysis occasionally indicated 
that certain localized rough or aggregated surface regions contributed 
positively to the prediction values. This does not imply that surface 
roughness inherently enhances WHC or gel strength, but rather suggests 
that the model is highly sensitive to small, localized variations in surface 

Table 3 
Comparison of non-destructive methods for predicting WHC and gel strength in food systems.

Printability Method Materials Data Algorithm Main outcomes

WHC Kamruzzaman et al. (2016) Red meat HSI LS-SVM Rp
2 = 0.93, 

RPD = 4.09
Li, H. et al. (2025a) Pork batter Raman spectroscopy PLS Rp

2 = 0.9611, 
RPD = 3.3988

Ma et al. (2018) Cooked pork Sausages MSI PLSR r = 0.832
Our method 3D-printed surimi Digital image RF Rp

2 = 0.875 
RMSE = 0.831

Gel strength Duthen et al. (2021) Gelatin FT-NIR PLS RPD = 1.90
Li, H. et al. (2025b) Minced pork gel + potato starch Raman spectroscopy UVE-SVM Rp

2 = 0.8508, 
RPD = 2.1981

Xia et al. (2025) Surimi HSI-VNIR PLS Rp
2=0.9315, 

RMSEP = 36.1926
Our method 3D-printed surimi Digital image RF Rp

2 = 0.691, 
RMSE = 0.556

Fig. 8. Example collection of SHAP interpretations for 3D-printed surimi samples: (a) SHAP visualization for WHC and gel strength predictions in a NaCl 3 %, TGase 
0 % top-view sample, (b) SHAP visualization for WHC and gel strength predictions in a NaCl 3 %, TGase 0.1 % top-view sample, and (c) SHAP visualization for WHC 
and gel strength predictions in a NaCl 3 %, TGase 0.3 % side-view sample.
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texture, and that minor irregularities within otherwise smooth surfaces 
may have been learned as predictive cues. As shown in the experimental 
results in Section 3.2, samples with high WHC or gel strength often 
exhibited surface defects, leading to a decrease in overall printability. In 
this context, the positive contributions observed in SHAP should be 
interpreted not as indicators of actual improvements in physicochemical 
properties, but as reflections of the relative patterns and sensitivities 
learned by the model. SHAP visualizations represent relative feature 
contributions rather than absolute surface properties, and therefore, 
localized texture variations may yield high SHAP values even if they are 
not directly related to improvements in product quality.

4. Conclusions and future work

This study successfully developed a machine learning-based predic
tive model for evaluating the printability of 3D-printed surimi. We 
achieved this by quantitatively extracting texture features from digital 
images using CV techniques. Specifically, a RF regression model, based 
on GLCM features, effectively analyzed surface textural variations 
induced by different additive types and concentrations. Our results 
clearly demonstrate that printability can be accurately predicted solely 
through non-destructive digital image analysis, a significant advance
ment over traditional methods.

For WHC prediction, the TOP model demonstrated superior perfor
mance, achieving a MAE of 0.674, R2 of 0.875, and RMSE of 0.831. In 
contrast, the TS model exhibited higher accuracy for gel strength pre
diction, yielding a MAE of 0.391, R2 of 0.691, and RMSE of 0.556. 
Compared to conventional, destructive, and time-intensive experi
mental methods, our proposed approach offers a cost-effective and non- 
destructive alternative that significantly reduces both labor and resource 
requirements. This innovation represents meaningful progress toward 
efficient and sustainable food quality assessment in 3D food printing.

Nevertheless, to improve its generalizability, future research should 
involve large-scale experiments encompassing a broader range of addi
tive combinations. Further validation using diverse datasets, including 
various fish and meat-based raw materials, is also essential. To further 
improve predictive performance, diversifying the input features — such 
as color histograms and shape descriptors — and evaluating alternative 
machine learning architectures like convolutional neural networks and 
transformer-based models should be considered. In conclusion, this 
study not only demonstrates the feasibility of digital image-based 
printability assessment for 3D-printed foods but also lays crucial 
groundwork for the refinement and interpretability of machine learning 
models aimed at quantitative quality prediction. Given the relatively 
limited application of machine learning technologies within the food 
industry, the proposed approach offers valuable insights for advancing 
automated and data-driven quality evaluation in food manufacturing.
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