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ABSTRACT Existing multi-agent path-finding (MAPF) methods either assume homogeneous robots or
require inter-robot communication, limiting their deployment in large-scale agricultural settings. We present
conflict-based search for heterogeneous tasks (CBS-HT), a fixed-priority path planner for unpiloted ground
vehicles (UGVs) performing monitoring, harvesting, and transportation. CBS-HT assigns initial priorities
according to robot type and inter-workspace movement (e.g., field, sorting, warehouse) and integrates this
priority scheme directly into a CBS-inspired high-level search, constraining only the lower-priority agent
at each conflict. By design, CBS-HT relaxes strict completeness and optimality guarantees in exchange for
practical real-time performance on large robot teams, reducing search complexity while preserving collision-
free coordination. Three evaluation tiers—simulation, lab-scale, and orchard—test scalability, mission-level
efficiency, and real-world robustness. Compared with an uncoordinated baseline, CBS-HT shortens
high-priority robots’ travel distance by up to 19.1 m (13.5 %) and mission time by 28.4 s (13.2 %), while
maintaining a 100 % collision-free success rate for tested instances. These results demonstrate that priority-
aware safe-interval planning can deliver practical, communication-free coordination of heterogeneous UGV
fleets in commercial orchards and is adaptable to diverse multi-robot agricultural operations.

INDEX TERMS Agricultural robot, heterogeneous robot team, safe interval path planning, multi-agent
pathfinding, priority.

I. INTRODUCTION

Efficient coordination of heterogeneous agricultural robot
teams is essential for enhancing productivity in large-scale
farming operations. In such environments, multiple tasks
such as harvesting, transportation, and sorting occur con-
currently within shared workspaces, where narrow passages,
asymmetric task durations, and suboptimal local path
planning can lead to congestion and conflicts. These chal-
lenges highlight the need for designing task-specific robots
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using various robotic platforms, such as unpiloted ground
vehicles (UGVs) [1], unpiloted aerial vehicles (UAVs) [2],
[3], mobile manipulators [4], and aerial manipulators [5].
Among these, UGVs, as reliable platforms, have been
extensively studied, and UGV-based agricultural robots with
autonomous driving capabilities have reached the commer-
cialization stage.

Existing research has predominantly concentrated on
evaluating the performance of individual robots and advanc-
ing the capabilities of singular robotic entities. The next
imperative step lies in the development of multi-robot
systems (MRSs) to enhance overall task efficiency [6].
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FIGURE 1. The prioritized path planning algorithm for heterogeneous agricultural robot team to maximize work efficiency.

In agricultural automation, incorporating the collaborative
nature of human workers striving for efficiency in diverse
agricultural tasks is crucial. For labor-intensive activities
such as diagnosis, seeding, harvesting, and transportation,
heterogeneous teams of human workers emerge, each dedi-
cated to specific tasks like harvesting or transportation. Their
collaboration is vital for optimizing task execution [7]. Given
these aspects, deploying heterogeneous robot teams is an
attractive solution [8], [9]. However, in practical automation
systems, where the heterogeneous robot team must operate
concurrently within a shared workspace, congestion may
occur in confined passages or due to suboptimal local
path planning. As shown in Fig. 1, strategically deploying
heterogeneous MRSs is essential for enhancing operational
efficiency [7].

The control and deployment of heterogeneous MRSs
require careful investigation due to the significant increase in
system complexity compared to individual robots [10], [11].
Robot teams can be regulated using centralized or decentral-
ized strategies. Decentralized control offers several advan-
tages, such as leveraging local information and scalability, but
encounters limitations related to competition and local min-
ima in task optimization within the agricultural context [12],
[13]. In contrast, centralized control ensures consistency in
system behavior and facilitates globally optimized decision-
making. These benefits enable robot teams to maximize
work efficiency, considering constraints such as optimal path
planning and obstacle avoidance. Notably, centralized control
relies on a central controller, which may pose fewer chal-
lenges in restricted workspaces, such as those encountered
in agricultural scenarios. Agricultural settings, characterized
by clearly defined workspaces and effective communication
solutions—both satellite-based [14], [15] and local-network-
based [16], [17]—have been extensively explored for the
application of centralized control design [18].
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However, decision-making aimed at maximizing the task
efficiency of heterogeneous agricultural robots remains
limited. Addressing this challenge is crucial for the efficient
deployment of heterogeneous MRSs. To this end, the
multi-agent pathfinding (MAPF) problem has been intro-
duced. The MAPF problem has proven effective in planning
optimal paths for multiple agents concurrently in dynamic
environments. Moreover, it facilitates the configuration
of MRSs across diverse scenarios without necessitating
inter-robot communication, avoiding an increase in system
complexity. Additionally, the design of a task-specific cost
function for the MAPF solution allows for the planning
of a path that is suitable for the key perspectives of the
application (i.e., optimality, computational efficiency, and
path continuity) [19], [20], [21].

This paper proposes conflict-based search for heteroge-
neous tasks (CBS-HT), a prioritized path-planning algorithm
designed for heterogeneous agricultural robot teams perform-
ing diverse tasks such as monitoring, seeding, harvesting, and
transportation. By integrating task-specific priorities into the
MAPF framework, CBS-HT enables efficient coordination
of robots with different roles, minimizing congestion and
optimizing task execution order in shared workspaces [22].
Unlike conventional MAPF approaches that assume homo-
geneous agents, the proposed algorithm considers the unique
operational constraints of agricultural environments, allow-
ing high-priority tasks to be completed without unnecessary
delays. Furthermore, CBS-HT is designed to function
without inter-robot communication, enhancing its scala-
bility and applicability to real-world autonomous farming
systems.

A. RELATED WORK
MAPF is a fundamental problem in MRS, where the goal
is to compute collision-free paths for multiple agents while
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optimizing specific cost functions. These cost functions
typically consider factors such as optimality, computational
efficiency, and path continuity [23], [24], [25]. Various
algorithms have been developed to address this problem, each
with distinct strengths and limitations.

A*-based global search is a well-established approach,
which offers optimal solutions in static environments but
suffers from high computational complexity as the number
of agents increases. To improve scalability, decoupled
approaches such as hierarchical cooperative A* (HCA*) have
been introduced, where agents are assigned fixed priorities,
and paths are sequentially computed [23]. Alternatively,
optimal reciprocal collision avoidance (ORCA) adopts a
decentralized approach by adjusting the velocities of agents
in real time to avoid collisions, making it well-suited for
dynamic environments [25].

Driven by hardware advancements, machine-learning
(ML)-based MAPF solvers have gained significant attention
over the past decade [26]. In particular, improvements in
high-performance GPUs and parallel computing technolo-
gies have greatly enhanced the practicality of ML-based
approaches for solving complex multi-agent path planning
problems. Learning-based approaches such as PRIMAL and
CLE enable adaptive decision-making by learning navigation
policies in simulated environments [24], [27].

These traditional approaches have been widely applied
in various domains, including warehouse automation,
autonomous vehicle coordination, and swarm robotics.
However, agricultural tasks present unique challenges
due to their sequential and interdependent nature. Unlike
industrial environments, where tasks can often be performed
independently, agricultural workflows require specific tasks
to be completed before subsequent ones can begin.

To address these domain-specific challenges, several
extensions of MAPF algorithms have been proposed to
enhance planning efficiency and flexibility under real-
world constraints. Among them, conflict-based search with
priorities (CBSw/P) and priority-based search (PBS) extend
the original CBS framework by dynamically assigning and
updating agent priorities during the planning process [28].
These methods are effective in reducing search space and
resolving conflicts adaptively.

However, such approaches typically focus on homoge-
neous agents and assume uniform task roles. This assumption
limits their applicability in domains like agriculture, where
agent capabilities and task priorities often differ. For such
domains, planning frameworks that incorporate fixed, role-
aware priority structures may offer improved coordination
and interpretability, especially when task dependencies are
predefined.

Moreover, agricultural environments are inherently
unstructured and dynamic, with frequent occurrences of task
failures, robot malfunctions, and environmental changes.
To address these challenges, adaptive mechanisms, which
can respond to real-time situational changes, must be incor-
porated in MRS path planning. Efforts must be dedicated
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to developing MAPF algorithms capable of dynamically
adjusting their planning strategies to enhance robustness and
efficiency in unstructured agricultural environments.

The Safe Interval Path Planning (SIPP) is particularly note-
worthy for its ability to incorporate temporal constraints into
path computation [29]. While SIPP was originally proposed
for individual agents, its formulation based on time-safe
occupancy intervals makes it highly effective in constrained
and dynamic environments. In multi-agent settings, SIPP
is often adopted as a low-level planner to ensure temporal
feasibility during sequential plan generation. Its integration
into higher-level MAPF frameworks contributes to more
efficient and collision-free coordination.

For example, a prioritized variant of SIPP tailored for
continuous-time multi-agent pathfinding on 2D roadmaps
is proposed [30]. While their method is effective for
continuous-time planning on 2D roadmaps, it operates
under the assumption of fixed agent priorities and relies
solely on prioritized SIPP calls without hierarchical conflict
resolution. In contrast, domains like agriculture require
scalable coordination frameworks that can handle task-
specific priorities, heterogeneous capabilities, and temporally
structured workflows.

B. CONTRIBUTION

The contributions and novelty of this study can be summa-
rized as follows:

1) We propose CBS-HT, a prioritized path-planning algo-
rithm that integrates task-specific priorities into MAPF,
improving coordination efficiency among heteroge-
neous agricultural robots while minimizing congestion.

2) We introduce a priority-aware safe interval mechanism
for collision-free path planning in continuous envi-
ronments, enabling deployment without inter-robot
communication.

3) We validate CBS-HT’s scalability and applicability
through simulations and field experiments, demonstrat-
ing its effectiveness in real-world agricultural tasks.

Il. PRIORITIZED SAFE INTERVAL PATH-PLANNING
ALGORITHM

A. PROBLEM DESCRIPTION

To overcome the practical challenges associated with
heterogeneous agricultural task automation, we propose
and implement a heterogeneous agricultural robot team.
Agricultural environments, characterized by high density
and numerous obstacles, often restrict the mobility and
maneuverability of multiple robots due to narrow pathways.
Therefore, efficiently planning the paths for a large number
of robots is crucial in such settings. The complexity of
this task is compounded by the heterogeneous nature of
agricultural environments, each exhibiting distinct features.
Thus, for efficient path planning, it is essential to generalize
the agricultural operational environment and correspond-
ing tasks. This generalization can be accomplished by
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FIGURE 2. Three agents travel to their destination g on undirected graph
G: (a) in time step ¢, (b) in time step ¢ + 1.

discretizing agricultural environments and representing them
as simplified undirected graphs. The heterogeneous agri-
cultural robotics team, designed for efficient agricultural
automation, must travel paths within this graph while
avoiding collisions. Moreover, every robot must perceive
others as dynamic obstacles and adapt to unpredictable
dynamic factors (i.e., human operators). During this process,
robots must traverse discretized environments in discrete time
steps. For simplicity, all grid transitions, including horizontal,
vertical, and diagonal, are assumed to consume one discrete
time step (Ar), regardless of their geometric length.

Notably, the challenge lies not only in optimizing individ-
ual robot paths but also in maximizing global work efficiency.
Agricultural tasks typically exhibit sequential characteristics
(e.g., sampling precedes diagnosis and harvesting precedes
transportation). Thus, assigning priority is an effective
strategy to address this challenge. Consequently, this study
introduces an algorithm to determine the priorities of multiple
UGVs and plan robot paths based on these priorities. For
example, as shown in Fig. 2, three agents (agent;, agent,
and agent3) are required to move toward their goals (g,
g2, and g3, respectively). In the absence of coordination
behavior, if all robots attempt to navigate optimal paths,
a collision may occur between agent; and agent; at time-step
=t + 1. As depicted in Fig. 2, the priorities <; help control
the behavior of agents and efficiently prevent conflicts and
congestion.

Traditionally, this problem is addressed using MAPF
frameworks [31]. MAPF algorithms are versatile, can
accommodate various tasks, and facilitate flexible task
distributions. They are capable of handling both static and
dynamic obstacles, enhancing adaptability. In MAPF, the
path planning of each agent is conducted in parallel, with
conflict resolution strategies employed when collisions occur.
Optimal search MAPF variants guarantee completeness and
cost optimality. However, their runtime increases rapidly as
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the team size grows, and practical variants usually relax one
or both guarantees to achieve real time performance.

The MAPF problem is a generalized extension of the
single-agent pathfinding problem [22]. In the single-agent
scenario, algorithms such as A* search for paths between two
vertices 51 and g1 in an environment represented as a mapped
graph G. Similarly, the MAPF problem, involving k agents,
can be represented as the tuple < G, s, g >. These entities
can be defined as follows:

G=(V,E), (1)
A = {agenty, --- , agent; } , )
s,g:[1,---,k]—> V. 3)

Here, V represents a vertex, and E represents an edge. The
environment is mapped onto a graph G, where vertices can
be occupied by agents. s denotes the initial positions of the
agents, and g represents their respective goal positions. The
MAPF problem aims to find a set A of collision-free paths 7y
for k agents.

Letm; = {v?, vl.l, e, vl.T" } denote the discrete-time path of
agent a;, where each vi € V represents the vertex occupied at
time-step 7.

m=000vh v VeV, Vielo,... T @)

The set of all collision-free paths is defined as:
P={m,m,..., 7} (@)
Each path satisfies the goal condition:
milTi] = g(i), Vie{l,... k}. (6)

Throughout the manuscript, ;[t] always denotes the vertex
location of agent a; at discrete time-step . All cost and
conflict computations in the algorithm refer to spatial
positions derived from vertex-based paths ;.

This problem involves finding a set of collision-free paths
P for agents in an environment mapped onto a graph G(V, E).
Here, m; represents a path of agent i, consisting of a set
of actions a, of agent i. m;[¢] denotes the position of agent
i at discrete time-step #, g(i) denotes the goal position of
agent i, with i,j € {1,---,k}. As illustrated in Fig. 3,
collisions between agents are defined based on overlapping
vertex positions at the same or adjacent time-steps. Since each
mi[¢] denotes the spatial location of agent g; at time-step ¢, the
following types of conflicts are defined [31], [32]:

i [1] = 7; [1], @)
7 [t] = m; [1],
milt+ 1 =mlt+1].

i [t + 1] = m;[¢], )

wilt] =m [t + 1],
[t + 1] = m; [1].

®)

(10)

The MAPF problem is defined by a task-specific cost
function [31]. Conventional scenarios typically involve
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FIGURE 3. Four types of collisions in the discretized MAPF problem:
(a) Vertex conflict; Equation (7), (b) Edge conflict; Equation (8),
(c) Following conflict; Equation (9), (d) Swapping conflict; Equation (10).

minimizinge either the total sum (Equation (11)), referred
to as the sum of costs (SoC) [33], or the maximum cost
(Equation (12)), referred to as makespan [34], associated with
the agents [35].

J(x) = argmin()_ i), (11)
ieA
J(x) = argmin(max;e4 |7;l). (12)

Given that this study aims to optimize efficiency in the
context of overall task performance, minimizing the total
travel distance is rational. Consequently, the SoC cost
function is used.

B. DESIGN OF PATH-PLANNING ALGORITHM

Agricultural tasks, such as monitoring, spraying, harvest-
ing, and transportation, necessitate collaborative work.
Agricultural tasks in a specific period can be divided
into several sub-tasks (e.g., harvesting, transportation, and
sorting). Accordingly, the workspace can be divided into
sub-workspaces. This divisibility enables the cooperation
of workers. Similarly, a heterogeneous agricultural robot
team operates in their respective sub-workspaces. When
managing such diverse tasks, prioritized planning emerges as
an effective approach for addressing MAPF problems [36].
This planning strategy involves assigning priorities to agents
during the path-planning process, guiding the MRS to
navigate paths that minimize conflicts, from agents with
higher priorities to those with lower priorities. The ultimate
goal is to minimize conflicts between agents and seek
efficient paths.

The proposed algorithm draws inspiration from the
conflict-based search (CBS) algorithm, a widely used con-
ventional MAPF algorithm [37]. CBS seeks a conflict-free
path by conducting a global search for each agent while
considering constraints C = (a;, a;, v, t). This approach
calculates collision-free paths by utilizing a constraint tree
based on the optimal path of a single robot. Notably, this
approach does not revolve around specific behaviors but dis-
covers paths through global exploration. This characteristic
facilitates algorithmic improvements, such as diversifying
search strategies or exploring limited nodes.

The proposed algorithm leverages these advantages, rely-
ing on a search-based approach [38]. Unlike conventional
CBS, CBS-HT does not branch the constraint tree on both
agents in a conflict. Instead, it selectively imposes constraints
only on the lower-priority agent, effectively integrating
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Algorithm 1 CBS-HT: Conflict-Based Search for Heteroge-
neous Tasks

1: Root.constraint < @

2: fori=0to N do
3: allocate v; to each workspace
4. end for
5: Root.solution < find individual paths by low-level()
6: Root.cost < sum of individual costs in Root.solution
7: Insert Root into OPEN // initially OPEN is empty
8: while OPEN is not empty do
9: P < best node from OPEN // lowest cost
10: Validate paths in P until a conflict occurs
11: if P exhibits no conflict then
12: return P.solution // Goal node found
13: end if
14: C < first conflict (a;, aj, v, t) in P
15: <main <— ComparePrioriry(a;, aj, <main, P)
16: Identify agent a;,,, with lower priority from updated
<main
17: A < new node
18: A.constraint < P.constraint U {(ajow, v, 1)}
19: A.solution < recompute paths given constraints in
A.constraint
20: A.cost < sum of individual costs in A.solution
21: if A.cost < oo then
22: Insert A into OPEN
23: end if

24: end while
25: return No solution found

priority-based resolution directly into the high-level search
process. This structural deviation from CBS enables more
efficient resolution in heterogeneous task settings.

Fig. 4 shows the concept and schematic of the CBS
algorithm. a; and a; denote agents i and j, respectively.
A collision is considered to occur between agents at a specific
vertex v and a specific time-step t. In CBS, the optimal
solution is derived through a global search by comparing
sets of individual optimal paths iteratively. Conversely,
CBS-HT modifies this process by assigning priorities to
agents, thereby reducing the search space and computational
complexity.

Unlike classical Conflict-Based Search (CBS), which gen-
erates constraints for both agents involved in a conflict and
explores all possible priority orderings, CBS-HT introduces
a selective constraint mechanism. It enforces constraints
only on the lower-priority agent and resolves conflicts
using a fixed or locally-adjusted priority ordering. While
this reduces the branching factor and improves runtime
efficiency, it sacrifices the completeness guarantees inherent
to CBS. Therefore, CBS-HT should be regarded as a hybrid
framework that inherits CBS’s high-level search structure
but adopts a prioritized resolution policy inspired by fixed-
priority planning.
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FIGURE 4. Brief sample of a constraint tree in the CBS algorithm.
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The pseudo-code for CBS-HT is outlined in Algorithm 1,
and its procedural flow is depicted in Fig. 5.In contrast to the
constraint tree used in CBS (see Fig. 4), our method in Fig. 5
follows a single-branching strategy by enforcing constraints
only on the lower-priority agent. This not only reduces the
branching factor but also aligns with the task-driven priority
schema central to heterogeneous agricultural workflows.
Initially, workspaces are allocated to each agent based on
predefined task priorities (lines 2—4), followed by computing
initial paths for all agents without constraints (line 5). Note
that each agent’s path is represented as a sequence of
vertex positions over discrete time steps, denoted by 7; =
{v?, R viT" }, and stored in solution sets such as Root.solution
or A.solution. The algorithm iteratively explores the best node
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from the OPEN set (line 9), validating paths until a conflict
arises (lines 10-11). When a conflict is identified between
two agents at a given vertex and time step (line 13), the
priorities of the conflicting agents are compared to identify
the lower-priority agent (lines 14—15). Constraints are then
selectively imposed only on the lower-priority agent (lines
16-17), prompting path recalculations under the updated
constraints (line 18). If a feasible solution emerges, it is
reinserted into the OPEN set for further exploration (lines
19-21). If no valid path can be found for the constrained
agent, the node is simply discarded without insertion. This
effectively prunes the infeasible branch. This behavior aligns
with the design choice of enforcing constraints only on lower-
priority agents, and has no effect on the algorithm’s intended
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FIGURE 6. Simplified concept of the CBS-HT: allocating constraints to
low-priority agents.

operation. This is because CBS-HT does not aim to explore
all possible constraint combinations.

To clarify the theoretical properties of CBS-HT, we briefly
state three guarantees that follow from its structure and
planning strategy.

Lemma 1 (Collision-Freedom Guarantee): With a fixed
total priority order > over the agents, the Safe-Interval
scheduler ensures that:

(a) no two agents occupy the same vertex v at the same
discrete time-step, and

(b) no two agents traverse the same undirected edge (u, v)
in opposite directions during the same time-step.

Proof sketch. Planning proceeds in priority order. Each agent
is routed only through currently unoccupied safe intervals.
By induction on the priority list, vertex overlap is impossible.
Because edge traversal requires both endpoints to be free
at the same time-step, simultaneous opposite crossings are
likewise excluded.

Lemma 2 (Polynomial Search-Complexity Bound): For n

agents on a grid of | V| vertices, a CBS-HT planning episode
expands at most O(n - |V|log |V|) A* nodes.
Proof sketch. The root computes n independent A* plans
(On|V|log|V])). Each conflict triggers at most one replan
for the lower-priority agent, which is never revisited after
conflict resolution. Total replans are at most n, each with A*
cost O(|V|log |V]).

Proposition 1 (Approximation-Ratio Bound): Let c*
denote the optimal total path cost, and Cyr the cost returned
by CBS-HT. Assuming no priority inversions, we obtain the
approximation guarantee Cyt < (1 + u) - C*, where u is the
maximal per-agent detour cost due to waiting.

Proof sketch. Each low-priority agent may wait behind
higher-priority agents, incurring bounded detour costs. The
worst-case detour y upper-bounds the total additive cost.

Remark. These results provide safety, polynomial-time plan-
ning, and bounded sub-optimality. Completeness remains
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Algorithm 2 Assign and Compare Priority

1: procedure ComesrePrioriry(a;, dj, <main, R.solution)

2: if <main,i7é<main,./' then

3: ajw < agent with lower priority (higher
numerical <4, value)

4: else

5: if a; = a, and a; = a;, then

6: <main,i < <main,i -1

7: Alow < a;

8: else

9:

cost; < R.solution.cost(a;), costj <
R.solution.cost(aj)

10: if cost; > cost; then

11: <main,i <= <main,i -1
12: Alow < a4

13: else if cost; > cost; then
14: <main.j < <main,j —1
15: Alow < 4j

16: else

17: (tie-break arbitrarily) ajo, < a;
18: end if

19: end if

20: end if

21: return <;,in, diow

22: end procedure

an open issue under fixed priorities and is discussed in
Section V-D.

The CBS algorithm is a representative NP-hard prob-
lem [39]. This means that conducting a search for all
comparable nodes exponentially increases the complexity of
the algorithm as the number of agents and number of vertices
that can be traversed increase. Thus, this extensive search
may be unsuitable when constructing navigation systems
designed for use in dense spaces or for multi-robot teams.
Unlike conventional CBS, as depicted in Fig. 6, CBS-HT
strategically reduces complexity by preventing constraint
additions to high-priority robots, thereby decreasing the
absolute travel distance and enhancing overall operational
efficiency. This targeted constraint approach is particularly
beneficial in dense operational environments and scenarios
involving heterogeneous robot teams.

Initial priority assignments aim to optimize overall effi-
ciency; however, the current framework may face challenges
when robots share identical priority levels. To address this
limitation, CBS-HT incorporates nuanced priority decision
strategies, considering robot type and associated costs,
as detailed in the subsequent section.

C. PRIORITY DECISION STRATEGY

The determination and adjustment of priorities for hetero-
geneous tasks are essential within the proposed algorithm.
For priority establishment, the agricultural environment is
subdivided into discrete workspace units. The environment

VOLUME 13, 2025



Y. Jo, H. I. Son: CBS-HT: Prioritized Safe Interval Path-Planning Algorithm

IEEE Access

is consistently divided into three primary workspace
categories: (1) warehouse, (2) sorting workspace, and
(3) field-processing workspace. Specifically, the warehouse
acts as a standby workspace, where robots await further
instructions before initiating their tasks [40].

Vertices representing these workspaces can be formally
defined as follows:

s,g >V, V= {vw,vs,\/f}. (13)

Consequently, movements m between workspaces form a
set M consisting of six possible transitions, explicitly defined
as follows:

m — M’MZ {VWS9 wa’véfv‘}SstfW’vﬂ}' (14)

Robots are categorized into two distinct types: harvesting
agents (ay,) and transportation agents a;, formally defined as

r = R, R ={ay, a}. (15

The robot heading toward the field processing workspace
(e.g., monitoring, spraying, and harvesting robot) is deemed
the most crucial for operational efficiency in tasks. Therefore,
the priority coefficient kj,;; is defined as 1 for priority
determination. When defining the types of robots and their
movements for priority determination, the priority matrix for
<inir,1 1s structured as follows:

r= [Z;} ,m= [was st]v (]6)

rxm=|}(1)i|. a7

The priority determination involves incorporating con-
straints. Specifically, constraints are introduced to consider
both the movements (m) between workspaces and robot
types (r). The priority coefficient k;y;;, crucial for operational
efficiency in tasks, is set as 1. The priority matrix for < 1,
which defines the initial priorities, is structured as follows:

11
<init, 1= Kinit X ¥ X m = [1 O} . (18)

Notably, the robot heading toward the warehouse does
not considerably affect the efficiency of mission execution,
as it is directed to the warehouse for reasons such as battery
replacement or unpredictable error. Therefore, the priority
coefficient k;,;; is defined as 3 for this case. The third priority,
<init,3» 1s derived as

r= |:ahi| sm = Ve, vl 19)
11
rxm=|:01:|, (20)
33
<init,3 = Kinit X 1 X M = |:O 3] . (21)

Similarly, constraints are introduced in matrices » and m
to indicate that robots (in this case, harvesting robots) are
not associated with the sorting workspace. The three-level
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TABLE 1. Initial priority levels based on robot type and movement
intention.

Robot Type To Field (v¢)  To Sorting (v;)  To Warehouse (v,,)
Harvest (ay,) 1 - 3
Transport (a;) 1 2 3

priority scale is explicitly defined as follows: priority 1 is
assigned to agents with time-sensitive tasks, priority 3 to
agents with more flexible schedules, and priority 2 to
intermediate roles not falling into either category. The second
priority can therefore be unambiguously determined by
excluding the first and third priorities in all instances. The
pseudo-code for this priority decision strategy is outlined
in Algorithm 2. As mentioned, we adjust the priorities
considering the harvesting and transportation scenarios to
evaluate the algorithm under heterogeneous agricultural task
settings. Homogeneous or heterogeneous task combinations
(e.g., monitoring and spraying) can also be accommodated by
adapting the same adjustment logic.

Table 1 summarizes the initial priority levels assigned
to agents based on their movement between workspace
types. As shown in Table 1, harvesting robots (aj) are
assigned the highest priority (1) when moving toward the
field workspace due to the time-sensitive nature of harvesting.
They are assigned the lowest priority (3) when returning to
the warehouse. Transportation robot (a;) also receive high
priority (1) when headed to the field, but receive medium
priority (2) for sorting tasks and low priority (3) when moving
toward the warehouse.

In this study, priorities among agents were predefined
based on their operational roles; specifically, harvesting
robots (aj) were given higher priority compared to transport-
ing robots (a;). This prioritization reflects practical consid-
erations in agricultural operations, where timely harvesting
is critical. While this predefined prioritization simplifies
conflict resolution, determining optimal priorities tailored to
specific agricultural applications was considered beyond the
scope of the current research.

D. SAFE INTERVAL MRS CONFIGURATION

The proposed algorithm is expected to be deployed in
agricultural environments with noise and rough road surfaces.
Therefore, we configure a multi-robot navigation system for
field evaluation. However, because the proposed algorithm
considers a discrete environment and time, it cannot be imme-
diately applied in the continuous real world due to field char-
acteristics (e.g., slope, slip, and sensory noise). To address
this, we introduce a drive completion feedback-loop that
maintains a safe interval between robots in the configured
system. The overview and detailed architecture is depicted
in Figs. 7 and 8. Each robot is assigned a unique starting
point, destination, and tasks. A LiDAR-based simultaneous
localization and mapping (SLAM) and a navigation system
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FIGURE 7. Architecture of the configured multi-robot navigation system.
The drive-completion feedback loop (red) can address potential problems
in a continuous world.

are installed on all agents. Multiple individual controllers
calculate the optimal path for each robot, and a central
controller then synthesizes these paths into a collision-free
path that all robots can follow. After the collision-free path is
distributed to each robot, the robots do not need to actively
recognize and avoid each other.

Thus, in the ideal case, communication between robots is
not essential. However, practical challenges exist in the real
world. As discussed, the proposed algorithm considers a dis-
cretized environment and time. Owing to potential problems
(e.g., dynamic environment, sensory noise, and robot slip)
that may lead to excessive obstacle avoidance or undesired
travel in agricultural environments, the performance of the
navigation system may be degraded.

To solve this challenge, we design a safe interval controller
so that a multi-robot system can traverse the path calculated
through the proposed algorithm in continuous time and
environment. One robot, chosen at random, maps the
environment and shares the resulting map with all other
robots. Concurrently, robot localization and map updates
occur and are refined using Bayesian-filter-based beliefs [41].

The control strategy for the four-wheeled mobile robots
used in this study can be expressed as follows:

Uiy = (Ve wan) (22)

where U(j.;) represents control inputs, and V and w denote
the linear and angular velocities of a robot, respectively. The
process of updating the states and maps of the robots can be
expressed as follows:
PX:1Za.ny, Uginy), (23)
P(M|Z1:1), X(1:0)), (24)
where Z(.;) represents sensor measurements, X(i.;) denotes

robot pose estimates, and M denotes the environment map.
The Bayesian filter-based beliefs are updated as follows:

PX;, M1Zq.1), Uqry)- (25)

The MAPF problem assumes an environment represented
by a grid. Therefore, the generated map must be divided into
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Algorithm 3 Create Grid Map
1: function creareGrioMar(width, height, cellSize)
2: gridMap <« empty 2D array with dimensions
(width/cellSize) x (height/cellSize)

3: for x from O to (width/cellSize) — 1 do

4: for y from O to (height/cellSize) — 1 do

5: gridMap[x x (height/cellSize) + y] < cre-

AteGrioCeLL(x X cellSize, y x cellSize, cellSize)

6 end for
7: end for
8
9

return gridMap
: end function

grids. The pseudo-code of the grid-partitioning algorithm is
presented as Algorithm 3. Here, “width” and “height” refer
to the horizontal and vertical dimensions of the entire map.
The variable “cellSize” indicates the size of each grid cell,
determined based on the dimensions of the mobile robots.

As depicted in Fig. 7, within the configured system,
no direct communication occurs among the robots. Instead,
the robots communicate exclusively with a central control
node. This open-loop navigation system exhibits limitations
in terms of adapting to environmental changes and coordi-
nating with other robots, especially when operating within a
discretized time domain where synchronization-related chal-
lenges may arise. To address these limitations, we implement
a closed-loop control system using the robot operating system
(ROS). This ensures that all robots detect their arrival at
waypoints and proceed to the next waypoint. The control
input U;(t) for agent i at time-step ¢ can be expressed as
follows:

Ui(t) = K(Py, 6:, X;"™ (t + 1), m(1)), (26)
m(t) € {0, 1}. 27)

Here, m indicates whether all the robots have reached
waypoint Xl.way(t) at time-step ¢. If m is 1, agent i needs
to adjust its position P; and orientation 6; to reach the next
waypoint X,.Way(t + 1). K denotes the control algorithm, with
PID control leveraged in this study.

E. COMMUNICATION
A middleware-based communication framework is imple-
mented to enable centralized control of three autonomous
robots over an LTE-based IEEE 802.11 wireless network.
The system leverages the ROS for distributed message
passing, while the network infrastructure is established
via an LTE-backed WLAN. This setup ensures real-time
bidirectional data exchange with minimal latency and robust
connectivity across the robotic unit and central controller.
To establish a secure and reliable communication channel,
secure shell (SSH) over TCP/IP is adopted, enabling remote
access to each robotic platform. The network layer uses IEEE
802.11n operating in the infrastructure mode, with the LTE
gateway functioning as the primary access point. TCPROS
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is used for deterministic data transfer, ensuring packet
integrity and in-order message delivery, while UDPROS
facilitates low-latency communication for time-sensitive
control signals.

To enhance network performance and mitigate potential
congestion in the LTE-backed IEEE 802.11 infrastructure,
adaptive bitrate selection is used. These techniques ensure
prioritized data transmission for real-time robotic operations.
This architecture provides a scalable, secure, and low-latency
communication framework, enabling efficient multi-robot
coordination in dynamic and decentralized environments.

Ill. EXPERIMENTAL SETUP

A. ENVIRONMENTS AND SCENARIOS

Experiments are carefully structured to rigorously evalu-
ate the effectiveness, performance, and robustness of the
proposed CBS-HT algorithm across three experimental
scenarios: simulation, lab-scale field test, and orchard
evaluation. Each experimental setup includes two distinct
comparative scenarios: Baseline and CBS-HT. The Baseline
scenario employs an uncoordinated MRS, where individual
robots independently navigate using the A* algorithm with-
out centralized coordination or inter-robot communication.
Consequently, robots consider each other solely as dynamic
obstacles identified via onboard sensors. A concise overview
of the key characteristics of each scenario is provided below.
Detailed protocols for each scenario are presented in the
subsequent subsections.

o Scalability validation: A 32 x 32 four-connected grid
world with randomized obstacle densities of 10% and
20% and robot teams ranging from 20 to 50 units stress-
tests CBS-HT for scalability, measured by runtime and
success rate, and evaluates its ability to resolve conflicts.

o Lab-scale test: In a lab-scale outdoor arena, three robots
(two harvesters, one transporter) operate under ““face”
and ‘“‘crossover”” congestion patterns; mission-level
efficiency is gauged via travel distance, task-completion
time, and collision count.

e Orchard evaluation: Using the three-robot team in
a commercial pear orchard with two single-width
corridors, we again measure mission-level efficiency to
validate real-world applicability under uneven terrain
and intermittent GNSS.
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1) SCALABILITY VALIDATION

This simulation study has two objectives: (i) quantifying
how the proposed CBS-HT planner scales as team size and
obstacle density increase, and (ii) estimating its success rate,
defined as the percentage of instances where a collision-free
plan is returned within a 60 s time budget.

The proposed algorithm assumes a heterogeneous agri-
cultural robot team capable of performing monitoring,
harvesting, or transportation tasks by adapting tools or
effectors. Specifically, the evaluation focuses on the most
challenging scenario involving harvesting and transportation
robots. The average agricultural environment size considered
is based on realistic conditions. According to the USApple
Association’s 2024 economic impact report, the average
apple farm size was 14.47 acres in 2021. Additionally,
the University of Kentucky reports an average apple yield
of approximately 300 bushels per acre. Considering our
harvesting robot’s performance of harvesting a 300 g fruit
within 13.5 s, approximately 33 harvesting robots would be
required to harvest a typical farm within 72 h [42]. Because
deploying such a large fleet physically is impractical, we use
simulation to examine scalability and empirical success under
representative workloads.

To validate scalability and empirical success, simulations
are performed in 32 x 32 four-connected grid worlds with
randomized obstacle densities of 10% and 20%. Robot team
size ranges from 20 to 50 in increments of ten. Each run is
limited to 60 s; instances that exceed this limit are counted
as failures. For every problem instance, planner runtime and
success rate are recorded. Fig. 9 shows representative grids
at obstacle densities of (a) 10% and (b) 20% used in the
evaluation. In the simulation experiments, both the spatial
layout and agent priorities are randomized. Specifically,
obstacle fields are procedurally generated using uniform
random sampling, and each agent is assigned a random
priority index independent of task roles.

2) LAB-SCALE TEST

This experiment targets mission-level -efficiency—how
quickly and smoothly a small heterogeneous team accom-
plishes its task under real-world sensing and congestion
limits.
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FIGURE 9. Sample instances with obstacle density of (a) 10% and

(b) 20%. The black cell represent an unoccupiable state (e.g., obstacle in
actual world), and the white gray cell represents an empty state in
four-connected grids.

In the lab-scale environment, the team consists of three
robots: two harvesting robots and one transport robot.
The objective is to simulate coordination among multiple
robots, a scenario common in high-density agricultural
environments. The features of the outdoor environment are
sparser than those of the indoor environment, and uncertain
and unpredictable features such as bushes are used for
mapping. This may lower the mapping quality. However,
we confirm that the localization error is within 0.09 m in
this environment. This localization error is smaller than the
grid size of 990 mm by 699 mm, as determined by the robot
size. Each robot is assigned a fixed and predefined priority to
reflect typical field hierarchies.

We establish two scenarios to simulate robot congestion
in an agricultural environment: face and crossover scenarios.
In the face scenario, three robots face each other, a situation
that often occurs between multiple transportation robots,
leading to overlapping optimal paths. In the crossover
scenario, one robot crosses the path of the other two
robots, representative of common agricultural congestion
situations for various robots. This scenario can aid the
comprehensive evaluation of the coordination performance
of the path and robot according to predefined priorities. For
both patterns, mission-level metrics are recorded for Baseline
and CBS-HT to quantify efficiency gains attributable to
coordinated planning.

3) ORCHARD EVALUATION

Unlike the lab-scale test, the orchard test is conducted in a
commercialized pear orchard located in Bonghwang-myeon,
Naju-si, Jeollanam-do, Republic of Korea. Its primary
purpose is to evaluate mission-level efficiency (i.e., travel
distance, completion time, and collision count) under real
farming conditions.

The proposed system can perform most agricultural tasks
with UGVs (including monitoring, seeding, and spraying).
However, to evaluate the applicability of the proposed
algorithm to agricultural scenarios, we assume the most
challenging heterogeneous tasks in a pear orchard: harvesting
and transportation. The experiment simulates the complete
task process of the agricultural robot team. Initially, all robots
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wait in the sorting workspace and are then deployed to the
first lane of the pear orchard to commence heterogeneous
tasks, coordinated through a central controller. The robot
team consists of two harvesting robots and one transport
robot. The three robots pass through two one-robot-width
narrow corridors, potentially leading to path congestion.

B. HARDWARE

The experimental setup involves three mobile robotic plat-
forms: two Clearpath Husky robots and one AgileX Scout
robot. Each platform is equipped with a Velodyne VLP-16
LiDAR sensor and an inertial measurement unit (IMU) to
implement a standard simultaneous localization and mapping
(SLAM) system alongside navigation functionalities. The
LiDAR sensor provides precise environmental perception,
facilitating accurate mapping and localization, while the IMU
enhances the system robustness by providing complementary
orientation and acceleration data. The integration of these
sensors enables reliable autonomous navigation within the
defined experimental workspace. As this hardware config-
uration and sensor integration follow conventional SLAM
methodologies without significant technical innovation, the
implementation details are briefly summarized here to
establish a clear context for the experimental evaluations.

C. PERFORMANCE METRICS
Unlike discrete-time algorithms, robotic systems inherently
operate within a continuous-time framework. Consequently,
conventional discrete-time cost metrics () alone are
insufficient for comprehensive evaluation of the proposed
algorithm in robotic implementations. Therefore, additional
quantitative performance metrics are utilized.

The performance evaluation primarily employs the cumu-
lative travel distance D; for each robot agent i:

I (28)
dr de

where x; and y; represent the Cartesian coordinates of robot
agent a; within the operational workspace. As the algorithm
incorporates strategic waiting periods to mitigate collisions,
distance alone is insufficient as a sole performance indicator.
Hence, the average task completion time, denoted by Tj,
is also considered:

1 N
Ti=~ Zri, (29)

where N represents the number of experimental repetitions.

Additionally, to ensure robust evaluation aligned with the
MAPF problem framework, the collision frequency metric N,
is considered:

N
N, = ch, (30
1

with n. being the number of collisions recorded in each
individual experimental instance.
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TABLE 2. Results of simulation-based validation.

Algorithm  Runtime N 3 Tt A Algorithm Runtime N 3 T, A
0.02917 50 1168 1082  1.08 14.02170 50 1147 1082  1.06
Proposed 0.00886 40 841 819 1.03 CBS algorithm 0.02934 40 837 819 1.02

0.00293 30 638 622 1.03
0.00139 20 413 405 1.02

0.00597 30 637 622 1.02
0.00282 20 413 405 1.02

Experiments are systematically repeated five times each
for both indoor and outdoor scenarios to validate the
consistency and reliability of results.

IV. EXPERIMENTAL RESULTS

A. SCALABILITY VALIDATION

The scalability and empirical success of the proposed algo-
rithm are evaluated through simulations using heterogeneous
robot teams in harvesting and transportation scenarios.
Through simulations, we can assess the g-value, which
includes the success rate and runtime. The g-value 7 (g) is the
sum of the optimal paths of k agents and can be calculated as
follows. The additionality A is calculated as follows:

T

31
(g) Gl

k
(g) = Zﬂoptimals A=
i=1

The results presented in Table 2 demonstrate the scalability
and high success rate of the proposed algorithm in scenarios
involving varying robot team sizes and obstacle densities.
First, in terms of scalability, the algorithm exhibits consistent
performance improvements as the number of robots ()
increases from 20 to 50. The runtime is significantly lower
than that of the CBS algorithm, with this improvement
particularly evident at higher robot counts (e.g., runtime
of 0.02917 s for the proposed algorithm compared with
14.02170 s for CBS at N = 50). These outcomes indicate
robust scalability, suggesting that the proposed algorithm
effectively manages complexity without exponential compu-
tational growth.

Across all cases, the proposed algorithm consistently
achieves near-optimal path efficiency, reflected in the addi-
tionality (A) values varying in a narrow range of 1.02-1.08.
These values imply that the calculated paths are very close to
the optimal solutions (77, ), confirming the absence of critical
inefficiencies or gaps. Furthermore, the marginal differences
observed in path lengths (7 versus m,) reinforce that the
algorithm efficiently exploits the available workspace while
maintaining high-quality solutions.

In summary, the proposed approach not only maintains
its computational efficiency as robot numbers scale but also
consistently delivers near-optimal solutions, affirming its
practical applicability and robustness in diverse and complex
multi-agent agricultural environments.

B. LAB-SCALE TEST
The simulation-based validation shows robust scalability and
a high success rate for the proposed algorithm in randomized
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instance. Nevertheless, further validation in realistic agri-
cultural conditions with environmental disturbances and
challenging terrains is necessary to comprehensively evaluate
performance.

Detailed results from lab-scale tests are summarized in
Table 3 and visualized in Figs. 10 and 11. These figures
clearly demonstrate path planning differences between sce-
narios. In the “Crossover” scenario (Fig. 10), CBS-HT
improves the path efficiency of the highest-priority Agent 1,
significantly reducing travel distance (by 3.6 m) and travel
time (by 5.2 s). However, Agent 3, with the lowest priority,
experiences increased travel distance (5.3 m longer) and time
(7.5 s longer) owing to additional maneuvers required for
yielding.

In the “Face” scenario (Fig. 11), all agents benefit from
CBS-HT, achieving reductions in both travel distance and
time. Specifically, Agent 1 exhibits the most significant
improvements (distance reduced by 5.6 m, time reduced
by 6.3 s). These results highlight that CBS-HT effectively
alleviates congestion by minimizing instances of agent
interaction and potential conflict.

Additionally, these outcomes emphasize the effective-
ness of priority assignment in optimizing path planning
performance. Higher-priority agents experience substantial
performance gains, while lower-priority agents manage
acceptable trade-offs. This further underlines CBS-HT’s suit-
ability and potential effectiveness for real-world applications
involving complex multi-agent coordination in agricultural
environments.

C. ORCHARD EVALUATION

The sequential snapshots provided in Fig. 12. And the orchard
experiment results are summarized in Table 4 and 5, with
corresponding trajectory analyses shown in Fig. 13. The
predefined ground-truth trajectory from the initial position
to the intended destination measures 121.2 m. Analysis of
systems operating without the proposed algorithm reveals an
average increase in travel distance of approximately 10 m
(e.g., 141.5 m for Agent 1 in baseline compared with 122.4 m
with the algorithm in Table 4), attributable to route conflicts
induced by simultaneous departures toward identical desti-
nations. In contrast, the introduction of the priority-based
algorithm significantly alleviates these congestion issues,
as quantified by the sum of positive and negative distance
deviations, which result in an overall negative net increment,
thus confirming improved navigational efficiency aligned
with agent priorities.
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FIGURE 11. Result for face scenario in lab-scale test. O and X denote the starting point and destination,

respectively: (a) baseline, (b) CBS-HT.

TABLE 3. Results of lab-scale tests.

Environment | Scenario | Agent (<) Case | Di(m) T; (s) N, (times)
Baseline 31.8 29.3 0
Agent LY —po T 1T282(3.6) 41 (52) 0
Baseline 13.5 17.6 0
Crossover | Agent2 (2nd) —~pe 14712 192 (+1.6) 0
Baseline 23.1 22.5 0
Outdoor Agent 3 3rd) —~pe AT T 284 (453) 300 (+75) 0
u Agent 1 (Ispy _Bascline 8.1 203 0
g CBS-HT | 125(5.6) 14.0(63) 0
Baseline 17.8 20.6 0
Face Agent2 @nd) —pe AT T 153 (25 184 (22) 0
Baseline 19.7 26.1 0
Agent 3 3rd) —~pe AT T 170 (27 203 (58) 0

A detailed inspection of Case 3, where improvements
are most pronounced, provides deeper insights. The highest-
priority agent, Agent 1, implements a strategic detour
of 19.1 m (from 141.5 m baseline to 122.4 m with
CBS-HT). Despite the longer path, Agent 1 achieves
earlier access to the field workspace compared with the
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baseline by approximately 28.4 s (from 215.6 s baseline
to 187.2 s with CBS-HT), reflecting optimized conflict
resolution and improved operational sequencing. Similarly,
Agent 2, performing analogous harvesting tasks, exhibits
only marginal increments in travel distance (2.3 m increase,
from 127.8 m to 130.1 m) and travel time (2.6 s increase,

VOLUME 13, 2025



Y. Jo, H. I. Son: CBS-HT: Prioritized Safe Interval Path-Planning Algorithm

IEEE Access

TABLE 4. Averaged results for orchard tests.

Environment |  Agent (<) Case D; (m) T; () N, (times)

Agent 1 (Ist) —pachine |14 E;fg,l) - ?538.4) ;

Orchard | Agent2 (2nd) ggsselg; 130%12 7(f2.3) 192%99 (()52.6) 8

Agent 3 (3rd) CBES;_IE; 135_122(14.-}4,1) 200.178(43:}6.6) 8

TABLE 5. Representative results of orchard tests (case#3).

Environment |  Agent (<) Case D; (m) Ti (s) N, (times)

Agent 1 (st) gﬁsselg; 122.173(3-' 120.5) 189.221?:80.8) 8

Orchard | Agent 2 (2nd) gésselg% 130& ?490.5) 217%3} 5(3r71.6) 8

G ARt —

Environment: Orchard

0 sec (90 sec)

Environment: Orchard

i 8 sec (98 sec)

(@)

(b)

Environment: Orchard

24 sec (114 sec)

Environment: Orchard

32 sec (122 sec)
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(d

FIGURE 12. Snapshot of the orchard test: (a) at 0 s (90 s in instance), (b) at 8 s (98 s in instance), (c) at 24 seconds (114 s in

instance), (d) at 32 seconds (122 s in instance). A full instance video is available at

https://youtu.be/wtlaAGrEN4I1?si=7R4bfz1y9xkimKBf

from 190.3 s to 192.9 s), highlighting the algorithm’s effec-
tiveness in maintaining operational consistency. Notably,
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the incremental travel time observed for Agent 2 remains
disproportionately smaller compared with the incremental
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FIGURE 13. Results of orchard test. O and X denote the starting point and destination, respectively: (a) baseline, (b) CBS-HT.

distance, suggesting enhanced route selection efficiency and
minimized acceleration—deceleration cycles.

The sequential snapshots provided in Fig. 12 further sub-
stantiate these findings, offering a time-resolved visualization
of agent movements and interactions, clearly illustrating
the strategic rerouting decisions enabled by the algorithm.
Specifically, at O s (initial state), agents depart simultaneously
toward the workspace, resulting in immediate potential
congestion (Figure 12a). At 8 s, Agent 1 executes optimal
traveling while Agent 2 temporarily waits, demonstrating
the algorithm’s real-time conflict management capabilities
(Figure 12b). By 24 s, both Agent 1 and Agent 2 have
successfully navigated the narrow entrance, allowing Agent
3 to resume its route (Figure 12c). Finally, at 32 s, congestion
is entirely resolved, showcasing the algorithm’s robust
dynamic conflict resolution capabilities in complex scenarios
(Figure 12d).

The trajectory comparison provided in Fig. 13 confirms
these numerical improvements, clearly illustrating optimized
routes generated by the CBS-HT algorithm compared
with the baseline. Overall, these quantified and visual
results underscore the substantial operational advantages
of the priority-based algorithm, emphasizing its capabil-
ity to systematically mitigate congestion and significantly
enhance navigational efficiency within complex orchard
environments.

V. DISCUSSION

A. LIMITATIONS OF CENTRALIZED CONTROL SYSTEM
Centralized control systems inherently depend on the robust-
ness and reliability of communication networks owing to their
dependence on continuous data transmission to and from a
central coordinator. The proposed path-planning algorithm
operates on such a centralized framework, making the system
highly sensitive to network disruptions, latency, and band-
width constraints [43]. In scenarios where agricultural robots
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must navigate complex or unstructured terrains, including
areas with dense vegetation, significant obstacles, or vary-
ing topography, maintaining stable connectivity becomes
challenging [44]. Although typical agricultural settings have
bounded and defined operational areas, facilitating network
management, unexpected conditions such as environmental
interferences or topological complexity may compromise
network integrity.

This study adopts an IEEE 802.11 wireless network,
a practical but limited choice that does not fully guarantee
high reliability in extended or obstacle-dense environments.
To mitigate these limitations, integrating satellite-based com-
munication infrastructure, which provides broader coverage
and improved reliability for outdoor environments, should
be considered. Satellite communication can significantly
enhance the scalability and robustness of centralized control
systems, enabling seamless real-time data exchanges even in
extensive agricultural landscapes. However, the deployment
of satellite networks requires addressing challenges such
as signal delay, power management, and cost-effectiveness,
which require detailed investigation for successful practical
implementations.

B. ADVANTAGES AND LIMITATIONS

The proposed CBS-HT planner offers several advantages.
It generates collision-free paths for up to fifty robots in
under sixty seconds, satisfying real-time requirements for
orchard operations. Runtime grows almost in proportion to
team size, which demonstrates practical scalability rather
than exponential growth. Because coordination is handled
centrally, the method works without inter-robot communi-
cation, so packet loss and radio congestion do not reduce
performance. The planner also supports heterogeneous tasks,
for example harvesting and transport, by encoding static
priority levels that give higher-value robots shorter and less
congested routes.
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FIGURE 14. Developed harvesting robot, composed of heterogeneous robot teams [4].

These strengths come with limitations. CBS-HT offers no
formal guarantees of completeness or cost optimality under
fixed priorities, so it may fail to find a path in environments
that are highly cluttered. Priorities are assigned offline and
remain unchanged during execution, which prevents the
system from reacting when mission urgency shifts, such
as when a low-battery transporter should take precedence.
The success rate falls when obstacle density exceeds thirty
percent, suggesting that richer heuristics or local replanning
would help. The evaluation used a grid resolution of
seven hundred millimetres and only three physical robots,
so performance with finer maps and much larger fleets
remains untested. Future work will explore dynamic priority
adaptation, adaptive grid refinement, and broader field trials
to address these issues.

C. DECISION ON PRIORITIES

The proposed algorithm introduces generalized priori-
tized path-planning for coordinating multiple heterogeneous
agricultural robots. Although harvesting and transportation
scenarios are selected empirically for evaluating the algo-
rithm’s performance, the method itself remains task-agnostic
and universally applicable to various agricultural operations
requiring coordinated robotic teams [40], [45]. The priority
scheme adopted in this study, while arbitrary, demonstrates
the algorithm’s capability to manage task assignments and
robot coordination effectively.

Although CBS-HT assumes a fixed priority ordering
among agents, the algorithm’s resolution mechanism—
where only the lower-priority agent is constrained at each
conflict—ensures that the overall search structure remains
stable across different priority configurations. This structural
consistency suggests that minor changes in the priority order
(e.g., reversing harvesters and transporters) are unlikely to
significantly degrade solution quality or feasibility. However,
we acknowledge that certain priority choices may have
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environment-dependent effects, particularly in constrained or
asymmetric maps.

To address this, we conceptually analyze the potential
impact of alternative fixed-priority schemes in this section.
While empirical evaluation is left for future work, preliminary
reasoning indicates that CBS-HT is robust to such variations
due to its local conflict resolution mechanism. Nevertheless,
developing context-aware or adaptive priority assignment
strategies remains a promising extension. Future work will
explore online adjustment of agent priorities based on task
urgency, congestion level, or learned policies.

Future work can be aimed at developing systematic and
context-aware frameworks for priority assignment, clearly
defining criteria reflective of specific agricultural operations
and environmental conditions. Advanced methodologies such
as multi-criteria optimization, reinforcement-learning-based
prioritization, or auction-based task allocation could be
utilized to dynamically adapt priorities, thus enhancing
efficiency and operational flexibility in diverse agricultural
environments.

D. DIRECTIONS FOR FUTURE WORK
Insights from this study suggest several avenues for advanc-
ing agricultural robotic systems. Although the evaluation in
this work is focused on harvesting and transportation, the
prioritization algorithm is generalizable and can be applied in
broader contexts. The priority scheme adopted in this study,
while empirical, demonstrates the algorithm’s capability to
manage task assignments and robot coordination effectively.
Future studies can be aimed at developing quantitative per-
formance metrics for practical validation, assessing aspects
such as operational robustness, communication reliability,
task completion efficiency, and adaptability to unforeseen
environmental changes.

Expanding communication infrastructure through satel-
lite networks represents a critical direction for improving
scalability and operational reliability. Given the need for
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FIGURE 15. Developed transportation robot, composed of heterogeneous
robot teams: (a) hardware, (b) software architecture [46].

agricultural robot teams to operate reliably at larger scales,
future research will explicitly focus on deploying CBS-HT in
significantly expanded fleets of over 100 robots, parallelizing
the solver to efficiently manage complex scenarios, and
rigorously evaluating performance in realistic agricultural
environments. Furthermore, GPS-denied environments such
as dense orchards require robust alternative localization
approaches. Therefore, future studies will investigate sensor
fusion methods integrating LiDAR, visual odometry, and
IMU s to ensure consistent navigation performance alongside
satellite-based communication systems.

Also, extending the validation of the proposed system
to actual field experiments is essential. The integration of
previously developed autonomous robots, in our research
group, for harvesting (Fig. 14), transportation (Fig. 15),
and spraying tasks [4], [46], [47] can enable comprehensive
validation. Moreover, quantitative evaluation metrics, such as
task completion time, collision frequency, path optimality,
and recovery robustness, must be defined and assessed to
evaluate autonomous multi-task agricultural systems in real-
world settings.

Although CBS-HT is conceptually distinguished from
existing priority-based methods, a direct quantitative com-
parison was beyond the scope of this study due to system-
level constraints. Future research will focus on implementing
and benchmarking these planners in shared environments to
validate their relative performance in agricultural contexts.
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The proposed algorithm is evaluated assuming harvest and
transportation scenarios in this work, and thus, the actual
agricultural task is not performed. However, as depicted in
Figs. 14 and 15, our research group has previously studied not
only the autonomous harvesting [4], [47] and transportation
robots [46] covered in this study but also autonomous
spraying robots. The heterogeneous agricultural robot team
can thus be composed of existing agricultural robots [7].
In future work, the proposed algorithm can be integrated with
the configured heterogeneous agricultural team. Additionally,
fully autonomous monitoring, spraying, transportation, and
harvesting tasks can be performed in the orchard.

VI. CONCLUSION

This study proposes CBS-HT, a prioritized safe-interval
path-planning algorithm developed for coordinating hetero-
geneous agricultural robot teams. By assigning distinct prior-
ities to robots performing diverse agricultural tasks, CBS-HT
effectively addresses multi-agent pathfinding challenges,
significantly enhancing operational efficiency by reducing
congestion and unnecessary maneuvers. Through rigorous
validation, including simulations, lab-scale experiments,
and orchard field tests, the algorithm achieved the initial
objectives of ensuring collision-free coordination, improving
mission-level efficiency, and maintaining robust scalability
across different operating conditions. Although centralized
control introduces potential vulnerabilities in communication
reliability, CBS-HT successfully optimized travel distances
and minimized conflict scenarios without requiring inter-
robot communication.

Future work will extend real-world testing to larger
heterogeneous teams and more varied agricultural task sets,
including monitoring and spraying. Additional directions
include developing systematic frameworks for adaptive
priority assignment that respond to real-time factors such
as task urgency, battery status, and congestion level,
as well as expanding communication infrastructure—e.g.,
integrating satellite-based networks—to improve reliabil-
ity in large-scale deployments. These advancements will
further position CBS-HT as a scalable and adaptable coor-
dination framework for complex, multi-robot agricultural
operations.
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