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ABSTRACT Fruit and vegetable harvesting robots have been widely studied and developed in recent
years. However, despite extensive research commercial tomato harvesting robots still remain a challenge.
In this paper, we propose an efficient tomato harvesting robot that combines the principle of 3D perception,
Manipulation, and an End-effector. For this robot, tomatoes are detected based on deep learning, after
which 3D coordinates of the target crop are extracted and motion control of the manipulator based on 3D
coordination. In addition, a suction pad featuring the kirigami pattern, which is a part of the suction gripper,
was developed to grip individual tomatoes in clusters. A scissor-shaped cutting module with an assist unit,
which is used to overcome structural limitations and implement effective cutting, was also desinged and
tested. The proposed tomato harvesting robot was validated and evaluated on a laboratory testbed basd on
the performance of each component. Therefore, in this study, we propose and verify a new robot design for
the effective harvesting of tomatoes.

INDEX TERMS Harvesting robot, end-effector, 3D perception, tractional cutting unit.

I. INTRODUCTION
Smart farms offer an advantage in terms of being able to
provide stable supplies of produce throughout the year, and
because they can manage crops more efficiently, research
on smart farms is ongoing worldwide. Some of the crops
cultivated in smart farms, such as tomatoes, are manually
harvest; however, the available labor is insufficient because
of the declining population of agriculture workers. Therefore,
a number of researchers have begun investigating methods
to harvest fresh fruit using agricultural robots in a green-
house [1], [2]. To reduce the labor required, many attempts
have been made to apply harvesting robots to the field, but it
was reported in [3] that there were was not commercialized.

In agriculture, crops and fruits are grown in an unknown
and unstructured environment. Because the physical proper-
ties of a crop, such as surface strength, weight, and size, differ
depending on the type of crop and its shape, and damage to the
fruit tree or crop plant can be reduced only with consideration
of the characteristics of the crop. Because of the irregular
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characteristics of crops, most harvesting robots have been
developed for specific crops. Therefore, several researchers
have begun investigating methods to harvest fresh fruit, such
as tomatoes, using agricultural robots in greenhouses. How-
ever, performing fast, accurate and intact harvesting of fruit
grown in greenhouses is still a problem for robots [4].

For robots to be able to perform effective harvesting they
should have the ability to detect and locate target crops, via
deep learning-based fruit recognition and 3D perception of
the access to target crops. When the 3D position of the target
crop is acquired, the coordinates are then used for the motion
control of the manipulator.

However, for tomatoes in particular, because the plants
grow in clusters, the detection of target crops is more diffi-
cult. Furthermore, tomatoes possess weak surface strength
and slippery surfaces, making it considerably difficult to
grasp commercial-grade fruits. Careful gripping of the fruit
is critical, because the value of a tomato decreases when
a small sharp object blemishes its appearance. In addition,
clusters of tomatoes usually grow in unpredictable direc-
tions, making it very likely for the fruit to be damaged by
the end-effector during the harvesting process. Therefore,
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developing an end-effector that considers the growth envi-
ronment and physical properties of tomatoes is essential to
preventing crop damage during harvesting. Because there
should be no damage to the target crop and surrounding crops,
it is necessary for a robot to be able to accurately estimate the
3D coordinates of the fruit and access to the target crops.

In this paper, we propose a harvesting robot that combines
the elements of each if these challenges for the effective
harvesting of tomatoes. In this robot, 3D perception based
on deep learning detects the tomato fruit and approaches the
fruit throughmotion control of the manipulator.With the end-
effector, the harvesting is completed using a soft material
gripper module and a scissor type cutting module.

II. RELATED WORK
Fruit harvesting offers important opportunities in the field
of agricultural robotics and has received significant attention
from researchers in recent decades. Several robots have been
developed for harvesting fruits and vegetables such as apples,
sweet peppers, cucumbers, kiwi fruit, strawberries, and toma-
toes. Research related to harvesting robots can be classified
into fruit perception [5]–[12], manipulation [13]–[15], end-
effectors [7], [16]–[18].

A. FRUIT PERCEPTION
Fruit perception is defined as image processing and
sensor-based determination of status and location of the
status and location of a fruit tree. Because the presence
of many undesirable factors, such as non-uniform lighting,
unstructured fields, occlusion, and other unpredictable fac-
tors, in actual environments, it is considerably difficult to
determine the exact state and location of a fruit tree [5]. Nev-
ertheless, research efforts continue to attempt to solve these
problems. For example, a machine vision system based on
color thresholding methods- [6], [7] employed to distinguish
between ripe strawberries and other strawberries and plants.
As reported in [8], for strawberry detection, image processing
based on color threshold values is a method that is often
applied in research. Also color, depth, shape information is
used to detect spherical or cylindrical properties of fruit.

Fluctuating illumination and weather conditions, compli-
cated environments, and dense fruits make it difficult to apply
robotics to agriculture. With the development of machine
learning, many studies focusing of the application of deep
learning to agriculture have been conducted. Deep learning
has been used for leaf classification [9], yield estimation via
machine learning [10], and fruit detection in orchards using
Faster R-CNN [12]. However, the speeds of these methods
are notably low, thus making these methods unsuitable for
real-time detection with high image resolution in actual har-
vesting scenarios. On the other hand, the You Only Look
Once (YOLO) [11]method enables high-speed detectionwith
high accuracy; thus, it is widely used for real-time detection.

It is used for leaf classification [9], yield estimation using
machine learning [10], fruit detection in orchards using Faster
R-CNN [12]. However the speed of these method is so slow

that it is not proper to real-time detection with high image
resolution in harvesting condition. The You Only Look Once
(YOLO) [11] method not only provides high accuracy detec-
tion but also has fast speed. It is widely used for real-time
detection.

B. MANIPULATION
Because of unknown and unstructured environments, such as
the presence of clusters of fruits and canopies, manipulation
is considered one of the major challenges in the development
of harvesting robots [13]. Harvesting from clusters is difficult
because surrounding fruits, leaves, stems, and other obstacles
are difficult to isolate from the target during detection and
manipulation.

For harvesting fruits or vegetables without damage to the
surrounding environment, a number of studies focus on the
path planning and motion planning of manipulators. Based
on the detected fruit, the end-effector of the robotic arm must
move to a position where it can harvest fruit, while avoiding
obstacles. However this problem is further complicated by the
necessity of controlling both the position and orientation of
the end-effector.

Manipulator motion planning is performed using visual
servoing to maintain a predetermined position while moving
to the image center coordinates of the detected fruit [14].
To avoid and harvest obstacles in the work environment,
the manipulator path is planned by modeling of the sur-
rounding obstacles. Different motion plans are established
according to the pose of the fruit and the end-effector [15].

C. END-EFFECTOR
End-effectors for harvesting have been developed accord-
ing to the different methods used to harvest existing crops.
In general, a blade is used to harvest the fruit. It was devel-
oped mainly for the purpose of separating fruits from stems,
specifically as a scissors-type end-effector [7], [16]. In [17],
the fruit was separated from the stem through the rotation
of the end effector’s infinite rotation joint, such that a blade
is not required. Harvesting methods that use a blade neces-
sitate accuracy in estimating the stem whereas harvesting
mechanisms using rotation do not consider the stem direction
and are robust against estimation errors. For paprika, another
harvesting method was developed, wherein the stem and fruit
are separated using a high-temperature arc generated by a
connection with an electrode wire [18]. Compared to cutting
with scissors, this approach has an advantage in terms of
delaying or reducing infections such as viral diseases.

III. HARVESTING ROBOT SYSTEM
The harvesting robot system proposed in this paper was
designed and developed based on the following concepts: per-
ception, manipulation, and end-effector. The harvesting robot
system is shown in Fig. 1. Fruit detection, motion control,
cutting modules and grasping modules for efficient tomato
harvesting robots are described in detail in the subsequent
subsections. The flow-chart for the overall operation of the
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FIGURE 1. Harvesting robot system setup comprising UR3 arm, Intel
Realsense D435 RGB-D camera, and an end-effector.

harvesting robot, show in Fig. 2, provides an overview of
the sub-steps, including motion control, of the harvesting
process.

A. HARDWARE SETUP
The harvesting robot system consists of a 6-DOF manip-
ulator(UR3), a custom end-effector and embedded board
(Jetson TX2), and RGB-D camera(Intel Realsense D435).
The RGB-D camera is attached to the end-effector, and is
used to transmit the pose data of the detected tomato to
the embedded board via USB communication. The Embed-
ded software environment of the harvesting robot system
consists of an Dual-Core NVIDIA Densor 2 64-Bit CPU
and Quad-Core ARMrCortexr-A57 MPCore, a 8G 128 bit
LPDDR4Memory 1866 MHx RAM, 256-core NVIDIA Pas-
cal GPU architecturewith 245NVIDIACUDAcores, Jetpack
SDK 4.2, Ubuntu 18.04 LTS 64-bit, and CUDA vesrion 10.2.

B. SOFTWARE SETUP
The software system is defined based on the Robot Operating
System (ROS) framework. The system comprises customized
subsystems shaped as a node, as shown in Fig. 3. Various open

software libraries were tested for each function implementa-
tion and linkage, and motion control was enabled based on
a selection of appropriate package that were linked with the
robot’s controller.

Software is written in Python and C++ mostly, running
on ROS melodic on Ubuntu 18.04. Most programs, such as
detection and planning is executed on the embedded board
mounted on the system. The complicated function is running
on the board’s GPU andCUDA10.2 is installed to accelerated
it. The system has customized subsystems shaped as node
shown as Fig 3.

Various open software libraries tested for each function
implementation and linkage, and motion control is enabled
by selecting appropriate packages and linking them with the
robot’s controller. The motion control software ROS Moveit!
packagewas used tomake a appropriate order tomovemanip-
ulator and solve kinematics.

C. TOMATO DETECTION
Fruit detection is a central function of the proposed
tomato-harvesting system. To detect a particular fruit in the
real world, robust data regarding the fruit are required. From
the viewpoint of a vision camera, fluctuating illumination
and weather conditions of the surroundings make it difficult
to detect the fruit [14], because the same color can appear
as differently colored pixels depending on the environment.
To solve this problem and obtain robust results, it is necessary
to use a deep-learning model.

1) YOLOV3 MODEL
YOLO is not only suitable for real-time detection with any
other CNN model but also features high accuracy [19].
In comparison to R-CNN, YOLO describes the detection
work as a single regression problem. YOLOV3 [20] was
developed from YOLO [11] and YOLOV2 [21]. Compared
with the network used in YOLO and YOLOV2, the network
used in YOLOV3 is Darknet-53 composed of 53 convolu-
tional layers. Its run time is shorter, and its accuracy is high.

The YOLO detection model is presented in Fig. 4. The
network divides the input image as a training set into S × S
grids. If the center of an target ground truth lies in a grid,

FIGURE 2. The flowchart of harvesting.
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FIGURE 3. System architecture illustrating software nodes connected by
ROS: darknet_ros node detects the tomato using the YOLOV3 deep
learning model; Jsk_pcl node constructs centroid_pose_array with the
detected image and point cloud data; harvesting construction is operated
by path planner, robot arm controller, and end-effector control nodes.

FIGURE 4. YOLO object detector pipeline.

the grid cell is responsible for detecting the target. Each grid
cell predictsB bounding boxes and confidence scores, as well
as C class conditional probabilities. Confidence is defined as
follows:

confidence = pr ( Object )× IoU truth
pred , pr ( Object ) ∈ {0, 1}

If the target is in the grid, pr (Object) = 1; otherwise, it is 0.
IoU truth

pred represents the juncture between the predicted box
and the ground truth. Confidence denotes whether the objects
are in the grid and the accuracy of the predicted bounding box
if it contains objects [11].

2) DATASET
In this study, the image data were acquired from a tomato
farm located in Gimje-si, Jeollabuk-do, Republic of Korea,
using an RGB-D camera with a resolution of 1920 × 1080.
The dataset was acquired from a facility horticulture farm in
June 2019. From the tomato farm, 770 images were collected
among them 70 images were randomly selected for the test
dataset. The tomatoes were labeled with bounding boxes in

advance using marking boundary software Yolo_mark. After
training the model 4000 times in portion to the number of
classes, we obtained weights for which the loss was close to
zero.

3) YOLOV3 RESULTS
Tomatoes that were detected above the 0.95 threshold were
identified by a bounding box. We evaluated performance
using the area under the precision recall curve [22]. The
precision and- recall equations are as follows:

Precision =
TP

TP+ FP
, (1)

Recall =
TP

TP+ FN
, (2)

where TP is the number of true positives (correct detections),
FP is the number of false positives(wrong detections), and
FN is the number of false negatives(mis-detections). AP
is the value of the average precision for class. The results
in Table 1 show the performance of the learned deep-learning
model.

TABLE 1. Performance of learned deep-learning model.

D. POSE DETECTION
For its end effector to reach the fruit, it has to view the scene
as a three-dimensional(3D) world to determine the pose of
the fruit. A pose is composed of a position vector and an
orientation vector [23]. An RGB-D camera is used to obtain
the pose of the target. It generates point cloud data that
indicate the distance between the target and the camera. The
point cloud data are an assemble of mass from wasted time
and distance data from the object and are obtained using Lidar
sensor or an RGB-D sensor. We used an open-source point
cloud library to easily handle the point cloud data, enabling
the robot to perceive the 3D world. An algorithm that esti-
mates features is then incorporated [24]. By using this library,
we combine the target image detected byYOLOV3with point
cloud data. Fig. 5 describes the method of obtaining the pose
array of a detected tomato. When tomato is perceived by the
YOLOV3 model, the center of the detected box is denoted as
a tool center point(TCP) coordinate. Using point cloud data,
we can determine a centroid pose array for the detected fruit.

E. MANIPULATION
After the tomatoes are detected, the target and sequence of the
harvesting process are determined. To harvest the tomatoes
according to the determined method, the manipulator con-
taining the developed gripper module needs to bemoved to an
operable position. Fig. 6 shows the mapping process between
the end-effector attached to the manipulator and the tomatoes
targeted for harvesting.
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FIGURE 5. Method of estimating fruit 3D coordination: (a) Original color
image; (b) Detecting fruit using YOLOV3 model; (c) Point cloud data;
(d) 3D coordinate of fruit.

FIGURE 6. Mapping for motion control.

The end-effector has an RGB-D camera attached to it
for the detection of tomatoes. Because the interrelationship
between the end effector and camera affects the success rate
of harvesting, hand-eye transformation is essential. Hand-eye
cameras and end-effectors are characterize by rigid trans-
formation relationships that include rotation and translation,
which enable hand-eye calibration through calculations. Cal-
ibration effectively reduces errors in the positioning system.

We performed it based on the position and posture where
the end-effector can be moved for cutting up to the center
point of the tomato. The relationship for calibration between
the robot base and object is modeled [25] in Eq (3):

DA = CB (3)

where D is a simple representation of cDo for the trans-
formation from the object coordinate frame to the camera
coordinate frame. In addition, A is oAb for the transfor-
mation from the robot base coordinate frame to the object

coordinate frame, and C is cCe for the transformation from
the end-effector coordinate frame to the camera coordinate
frame. Finally, B is eBb for the transformation of the robot
base frame to the end-effector coordinate frame. Each matrix
is expressed in Eq. (4) based on the decomposition of the
rotational partR of dimensions 3×3 and the translation vector
t of dimensions 3× 1:[

RD tD
0T 1

] [
RA tA
0T 1

]
=

[
RC tC
0T 1

] [
RB tB
0T 1

]
(4)

As a result, the object coordinate can be estimated using
Eq. (5) for the relationship and condition of the variables:

Ai = CBiD−1 (5)

Furthermore, the robot arm should be able to move in a
specific posture to the converted position coordinates. The
specific posturewas set based on optimum state the robots can
solve kinematics. And it should be able to relocate continu-
ously along the generated path. By changing the joint angle of
eachmotor, the robot moves to a specific position, andmotion
control is achieved as a the result.

F. END-EFFECTOR
1) CUTTING MODULE DESIGN
Cutting from the pedicel is one of the most necessary tasks
in tomato harvesting. By removing the pedicel as close to the
fruit surface as possible, a robot can prevent damage to the
tomatoes during the transfer process and preserve the value
of the fruit as a commodity. For this purpose, we used a pair
of scissors, which is the tool used in traditional harvesting,
as a cutting tool of our robot. Basically, the principle of the
lever was applied to the scissor mechanism, and this can be
expressed as shown in Fig. 7.

FIGURE 7. The mechanism of scissor structure.

The force required to cut the pedicel can be calculated
based on these mechanisms [26]. Fig. 7 can be expressed as
Eq. (6) by moment parallelism, and the required acting force
based on the relationship of each variable is calculated:

F(e)L(e) = F(a)L(a) (6)

However, the required force varies depending on the posi-
tion of the cutting object. The required force for the change
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in variables can be expressed based on Eq. (6) to Eq. (7):

F(e)min ≥
F(r)maxL(a)

L(e) (7)

where the acting force F(a) that actuates at the cutting posi-
tion L(a) can only cut it the stalk if it is greater than the
cutting resistance F(r) of the pedicel. Additionally, the min-
imum acting force must be greater than the maximum cut-
ting resistance for stable cutting. Based on this relationship,
the minimum exerted force F(e)min for cutting at the point
L(e) is defined.

According to this the relationship, for the cutting process to
be efficient, it must be performed as close to the rotating shaft
as possible. However, depending on the surface characteris-
tics of the cutting target, the pedicle may not be easily cut and
may be pushed out. In particular, this is likely to occur with
hard or tough objects such as tomato stems. Because of the
possibility of slippage occurring during the cutting process,
a momentary large force will also be necessary. Despite this
measures, it is possible that the pedicle is not cut completely.
Fig. 8 shows a cutting module applying the tractional cutting
unit (TCU) developed to ensure clear-cutting performance in
the scissor structure.

FIGURE 8. The tractional cutting unit for scissors.

The operational process of the TCU with the scissors is
depicted in detail in Fig. 9. First, the winch part and scissor
blade begin to rotate via the motor drive, and simultaneously,
the support moves along the central axis. Second, the pedicel
is towed in the direction of the central axis, which prevents it
from being pushed out of the scissor blade. With the scissor
blades completely overlapping, the pedicel is then cut and
separated. Finally, after complete cutting, the support moves
to its initial position by means of the reverse rotation of the
motor and the elasticity of the spring.

The rotation of the scissors and the operation of the TCU
can be performed simultaneously using one motor. When
the scissors blade rotates for cutting, the supporter transmits
the rotational force as traction force through the cable con-
nected to the handle guide. The pedicel is prevented from
being pushed out from the cutting area by the supporter, and
complete cutting is performed as the scissor blades overlap.
This mechanism can compensate for problems that can occur
during the cutting process and enable efficient cutting for
harvesting robots that use scissors.

FIGURE 9. Detailed image of the TCU operation: (a) The rotating scissor
blade and the moving support; (b) The towing pedicel; (c) The overlapping
scissor blades and cutting pedicel; (d) The moving support to its initial
position.

In addition, the connecting structure of the handle and
guide was selected to deliver sufficient cutting power to the
scissors. handle and guide are connected at a position as far as
possible from the rotation axis of the scissor blades. Through
this design, a greater acting force and torque are generated
Fig. 9. Furthermore, to transmit a relatively high torque from
the motor, the structure was designed such that the center of
motor rotation is approached as closely as possible.

Applying the motor was applied with the same specifica-
tions, it was not easy for the previously designed prototype,
with a general rotating structure, to cut a pedicel with a
diameter of 3.5mm. However, when the modified structure
design was applied, even stems with diameters of up to 6mm
were successfully cut.

2) GRIPPER MODULE DESIGN
The design of the end-effector for tomato harvesting is one
of the main factors that determine the performance of the
harvesting robot. In particular, the surfaces of tomatoes are
slippery and moist, making it difficult to grip the fruits.
To minimize damage to the crops suction grippers with, a soft
material are used to pick the fruit. When not under excessive
pressure, grasping through suction is one of the methods that
can minimize damage to cause by negligence.

The proposed suction gripper creates a pressure difference
between the inner and outer surfaces, thereby enabling the
grasping of objects such as tomatoes. The capacity of the
suction pad depends on the time required to create a vac-
uum between the object and the suction gripper [27]. A soft
material suction pad has an advantage in terms of flexibly
adapting to the surface, but may require structural changes
when heavy objects need to be lifted. Therefore, our goal
was to study the design form of the suction pad to enable
it to grip non-structured objects, specifically tomatoes, more
smoothly. However, soft elastic materials can bend, twist,
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compress, or stretch, which makes their modeling difficult.
Therefore, a gripper that utilizes a single suction pad, rather
than a large number of suction pads, to improve its suction
capacity should be constructed. The suction pad is adaptable
for contact with the round surface of the tomato and is con-
structed with a kirigami structure as shown in Fig. 10.

FIGURE 10. Kirigami-based suction pad.

In theory, a suction pad with an extremely small, flat cir-
cular opening would fit any surface because it could approxi-
mate an infinite planar surface [28]. The suction cup holding
force is directly proportional to the opening surface area,
expressed by

F = P A (8)

where F is the holding force, P is the vacuum pressure, and
A is the suction pad opening surface area.

FIGURE 11. Testbed setup according to growing type: case A: isolated
ripe tomato; case B: two ripe tomatoes; case C: three ripe tomatoes; case
D: four ripe tomates.

IV. EXPERIMENT
A. EXPERIMENTAL SETUP
The experiment was conducted on an testbed in the labora-
tory, using the setup described in Chapter 3. The testbed was
constructed in an environment similar to that of an actual
tomato farm in order to evaluate the performance of the
harvesting robot in practical harvesting scenarios as shown
in Fig. 11. Typically, tomatoes grow from stems, forming
clusters containing up to four tomatoes. Thus, the stems
used in the experiment carried clusters containing one to

four tomatoes. Although it is not possible to determine the
distributions of all tomatoes by a specific type, the tomatoes
that for a cluster can be classified. The experiments can be
divided into cases where there are only 1, 2, 3, or 4 in a cluster.
The greater the number of tomatoes in a cluster, the more
difficult it is to harvest them. Additionally, if a tomato has
a pedicel attached to it, the difficult involved on harvesting is
further increase. It was found that the numbers of tomatoes in
the clusters affected the experimental results.

B. EXPERIMENTAL RESULT
The harvesting cycle includes all the sequences that operate to
successfully harvest the fruit. To evaluate the performance of
the robot, two main performance measures, i.e., success rate
and cycle time, were determined. The total cycle time can be
obtained via the addition of the amounts of time consumed for
each subtask. For a successful harvest, and time consumed
in each step: perception, manipulation, and harvesting is
logged. The amounts of time recorded for the subtasks and
the total cycle time are listed in Table 2.Manipulation divided
the trajectory sequence into sub-steps to avoid obstacles,
and additional time was required due to the path planning
involved in each step. After approaching the fruit, the process
of detaching the fruit was regarded as harvesting. The total
cycle time was 5.9 seconds, and in the testbed, the fruit was
located close to the robot arm, so the harvesting speed was
relatively fast.

In general, harvest success indicates that fruit is harvested
without damage. Therefore, one of the important points
when using harvesting robots is to harvest target fruits and
surrounding crops without damage. The experiment result
performed on the testbed to verify the performance of the
proposed harvesting robot are shown in Fig. 12 and Table 3.
The performance was indicated by defining a score according
to the damage occurring on the surface of tomatoes during
the harvesting process. If the damage does not occur, it is
expressed as O and defined as a 100 score. Among the
damages, weak damage on the surface were marked with

a

and defined as 50 score, and those that gave strong damage
such as tearing were expressed as ×, and defined as 0 score.

According to experiment result, the tendency to create
damage increased as the number of clusters increased. In the
case of A, the tomato was alone, so there were no obstacle
such as surrounding fruits, which did not cause damages
during the harvest process. However case B, C, and D, as the
number of tomatoes in the cluster increases, neighboring
tomatoes other than the target tomato can be considered as
obstacles. Non-target tomatoes can be dynamically swing
during the harvesting process. Such swings can cause damage
by generating the movement of the target crop, and even if the
target crop is harvested without damage, it can cause damage
to non-target crops.

To further improve the performance of the robot, the
following problems are addressed in the discussion and con-
sidered as challenges to be overcome in the future: inaccu-
rate fruit localization due to errors in the detection of fruit;
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TABLE 2. For a successful harvest, and time consumed in each step.

FIGURE 12. Harvesting result according to the number of clusters.

TABLE 3. Harvesting score according to the number of clusters.

incorrect path planning; unsolved kinematics of the manipu-
lator for moving toward detected tomatoes; and obstruction
to target tomatoes.

V. DISCUSSION
In this paper, we proposed combination of 3D perception,
manipulation, and gripper modules for realizing an efficient
tomato harvesting robot. To evaluate the proposed harvesting
robot, experiments were conducted in a laboratory testbed
environment for each substep. However, the system has a
limitation in terms of not being able to apply several variables
that exist in actual environments, such as stem localization
and obstacles. In the future, we need to address the following
challenges:

A. STEM DETECTION
The detection procedure of the proposed system is composed
of only one step. This detection procedure only produces the
TCP, i.e., the center point of the bounding box generated by
the YOLOV3 model. The end- effector then moves to the tar-
get point. Thismethod causes the success rate to be dependent
on the size and pose of the detected tomato. To successfully
harvest the fruit, it must be cut precisely, and therefore stem
detection is essential. In addition, the manipulator is contin-
ually moved following the detected pose of the tomato stem.
Also working continuous work, the picking and cutting action
affect the position and pose of the other tomato by vibration
and small crash. To effectively follow the changes of target
fruit and cut it, visual servoing for the pose control of the
robot arms should be explored in future research [29].

B. REINFORCEMENT LEARNING-BASED PATH PLANNING
To control the motion of the manipulator, open source soft-
ware was used, for the application of Cartesian path planning
and solution of complicated kinematics. However, for some
specific poses, the manipulator can not solve the problem;
therefore, movement is blocked, and an appropriate trajectory
is not produced. In order to create an appropriate trajec-
tory, we need to determine the optimal harvesting sequence
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that can be harvested more easily, and path planning that
has changed accordingly is a way to shorten the harvesting
time. The planning trajectory is randomly generated, and
thus, either surrounding obstacles hinder movement or the
the harvesting time is changed depending on the produced
trajectory. In future research, to successfully reach the tar-
get point, the motion planning algorithm must be improved
via reinforcement learning. For the robots to execute rein-
forcement learning based on earned rewards from several
repeated several trials and errors, the manipulator should be
able to determine the optimal trajectory by itself [30]. Also
the manipulators decide the order to target fruit according to
produced optimal trajectory based on reinforcement learning.
This technique consumes less time and can enables the robots
to avoid obstacles.

C. END-EFFECTOR
We developed a scissor-type cutting module in which a trac-
tional cutting unit was utilized to ensure cutting performance.
The proposed cutting module of end-effector has advantage
in cluster. When a movement occurs in a crop other than the
target, target tomato also occurs movement. The TCU in the
cutting module minimized the movement of the stem, making
cutting smooth. However, the cutting scissors had a sharp tip,
which caused damage to the fruit on approach. Therefore,
another cutting mechanism must be developed. The structure
of the cutting module should not feature protrusions, and the
structure of the surrounding environment should be devel-
oped in a form that is relatively less affected by the system.

VI. CONCLUSION
In this paper, we propose an efficient tomato-harvesting robot
that combines the principles of 3D perception, manipulation,
and an end-effector. With this robot, deep-learning-based
detection and 3D perception are performed considering toma-
toes as the target. Motion control of the manipulator was
implemented based on 3D perception, whereas the developed
end-effector comprised two parts: a grasping module and a
cutting module. The grasping module grips tomatoes in a
cluster and is based on a suction gripper using soft robotics.
The suction gripper allows suction pads, which were based
on the kirigami pattern, to grip unstructured shapes more
easily. The cutting module, which has the shape of scis-
sors, is equipped with a tractional cutting unit to overcome
structural limitations and improve cutting. The proposed
tomato-harvesting robot was evaluated and verified using a
laboratory testbed. Although the proposed harvesting robot
did not exhibit high performance, it could be sufficiently
improved if further research is conducted, as explained in the
discussion.
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