
Computers and Electronics in Agriculture 212 (2023) 108116

A
0

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Human-centered approach for an efficient cucumber harvesting robot
system: Harvest ordering, visual servoing, and end-effector
Yonghyun Park a,b, Jaehwi Seol a,b, Jeonghyeon Pak a,b, Yuseung Jo a,b, Changjo Kim a,
Hyoung Il Son a,b,c,∗

a Department of Convergence Biosystems Engineering, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
b Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
c Research Center for Biological Cybernetics, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea

A R T I C L E I N F O

Keywords:
Cucumber harvesting robot
End-effector
Harvest ordering
Harvesting robot system
Visual servoing

A B S T R A C T

This paper presents a human-centered approach for an efficient cucumber-harvesting robot system. Specifically,
harvest ordering, visual servoing, and end-effector-based manipulation functionalities were integrated to realize
efficient and stable harvesting. The proposed approach involved determining the optimal harvest ordering,
guiding the end-effector to the cucumber pedicel through visual servoing, and designing an end-effector to
effectively harvest long cucumbers. The performance of the system was evaluated through preliminary and
field experiments. The results of the preliminary experiments showed that harvest ordering decreased the
harvesting time and travel length and increased the battery efficiency. The visual servoing was robust, and
pedicels could be rapidly detected at a speed of 16–23 FPS through computer vision technologies. The pedicel
could be accurately positioned within the cutting area of the end-effector. Furthermore, the proposed end-
effector could effectively cut thin cucumber pedicels (3–6 mm), with a 100.0% success rate. Field experiments
were conducted at three sites in Korea: Green Monsters, Sangju smart-valley, and Fresh-farm. The harvest
success rate at the three sites ranged from 50.9% to 60.0%, with an overall value of 56.6%. The overall
average harvest time of 56.0 s. The positional accuracy of the system was within the optimal range of 0–
30 mm. Furthermore, the primary causes of harvest failure were analyzed, and future research directions to
improve the performance of harvest robots were discussed.
1. Introduction

Cucumbers are among the most commonly consumed vegetables
worldwide. Cucumbers have secured a pivotal position in the global
vegetable consumption landscape due to their fast growth and mat-
uration cycles that are highly adaptable to various climates, from
temperate to tropical (Mao et al., 2020a). To provide a steady sup-
ply of this essential vegetable throughout the year, cucumber smart
farms have been established worldwide. Despite this advancement,
the agricultural sector encounters multiple challenges. One notable
issue is the shrinking labor force attributable to the aging population,
with this problem being particularly prominent in rural communities.
Additionally, high operational costs, such as those of energy, water,
agricultural chemicals, and labor, threaten the sustainability of these
farms. Furthermore, the labor-intensive nature of farming practices
aggravates the already complex issue of agricultural labor scarcity. To

∗ Correspondence to: Yongbong-ro 77, Gwangju 61186, Republic of Korea.
E-mail addresses: dk03378@jnu.ac.kr (Y. Park), seol0810@jnu.ac.kr (J. Seol), poooodg@jnu.ac.kr (J. Pak), chossbb68@jnu.ac.kr (Y. Jo),

ckddnckdwh12@jnu.ac.kr (C. Kim), hison@jnu.ac.kr (H.I. Son).
URL: https://www.hralab.com (H.I. Son).

address these problems, especially that of the large workforce required
in harvesting processes, the development of harvesting robots has
garnered considerable interest.

Several robots have been developed to harvest fruits and vegeta-
bles such as apples, peppers, tomatoes, kiwis, and strawberries (Li
et al., 2019; Yu et al., 2019; Song et al., 2021). Harvest robot systems
typically involve autonomous robots that can continuously perform
harvesting tasks such as fruit detection, reaching, cutting and catch-
ing, and loading (Xiong et al., 2020). For example, an existing apple
harvest robot incorporates a manipulator, vacuum-based end-effector,
and mobile vehicle (Hu et al., 2022). Field tests have demonstrated
that the rotational pull pattern is more effective in picking apples
than a simple pull pattern. Similarly, an existing red pepper harvesting
robot performs fruit detection, location, holding posture estimation,
and motion control (Arad et al., 2020). Experimental findings show
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Fig. 1. Structure of a cucumber plant.

that leaves and neighboring fruits can affect the detection accuracy
and interfere with the movement of the end-effector. The robot per-
formance can potentially be enhanced by addressing these problems.
The success rate and efficiency of tomato harvesting robots have been
enhanced by accurately locating and estimating the optimal position for
holding the fruit (Rong et al., 2022). In general, the tomato positions
must be continuously tracked because the end-effector tends to shake
during harvest. Kiwi harvesting multi-arm robots have been noted
to successfully harvest 51.0% of all kiwis in an orchard (Williams
et al., 2019). By reducing the drop rate and knock-off rate by 6.7%,
the success rate can be further improved. Efforts are being made to
minimize the kiwi harvest time by distributing uniform work among
multiple arms (Barnett et al., 2020). A strawberry harvest robot has
been developed to incorporate an autonomous robot that can con-
tinuously pick strawberries in multiple tunnels (Xiong et al., 2019).
Overall, harvesting robots are being integrated into various agricultural
systems to perform tasks continuously and autonomously. However,
it is necessary to consider a system holistically rather than focusing
on individual elements. Additionally, field experiments have reported
improvements by exploring failure cases related to problems such as
inaccurate fruit positioning, incorrect route planning, and fruit damage
caused by the end-effector. Thus, research on cucumber harvest robots
must take into account these challenges in the design phase.

Despite these considerations, most of the existing research on
cucumber-harvesting robots has been focused on detecting cucum-
bers (Mao et al., 2020b; Bai et al., 2022; Kim et al., 2023). This
is because the surrounding stems and berries are similar in color
to the cucumber, which renders its detection challenging.(Fig. 1).
Some attempts have been made to develop integrated autonomous
harvesting robots (Van Henten et al., 2002, 2003, 2009). In these
studies, field tests were conducted in highly variable environmental
conditions, failure causes were analyzed through discussion, and sug-
gestions for improvements were provided. However, research targeting
the autonomous harvesting of cucumbers is limited, and none of the
existing systems have been successfully commercialized. While the
individual systems has been extensively studied, it is necessary to
conduct empirical research that integrates the overall system and
addresses problems in irregular field conditions. Therefore, research
on cucumber harvesting must be guided by integrated and autonomous
methodologies.

As shown in Fig. 2(a), previous laboratory studies have developed,
combining the principles of three-dimensional (3D) perception, ma-
nipulation, and end-effector-based manipulation (Jun et al., 2021).
2

However, problems related to fruit localization, path planning, shaking,
and fruit damage while cutting are encountered in atypical environ-
ments, which necessitate human intervention To resolve these potential
problems, it is necessary to design robots that can ultimately perform
tasks autonomously by emulating human-like processes. As shown
in Fig. 2(b), recent laboratory studies have designed and conducted
preliminary experiments with a human-centered robot system for au-
tonomous cucumber harvesting (Park et al., 2022b). This approach was
aimed at emulating human harvesting methods by integrating harvest
ordering, visual servoing, and end-effector-based manipulation. The
system was noted to be effective in decreasing the travel length and
operating time, and the end-effector could realize stable grasping and
cutting. This framework highlights the necessity of effectively linking
the sensory information acquired during the harvesting process with
robot motion control, mirroring the approach adopted by humans. As
shown in Fig. 3, the human approach for harvesting cucumbers involves
three main stages :

1. Harvest ordering: Humans visually detect the cucumbers to be
harvested and determine the optimal harvesting order. This
process involves identifying cucumbers and considering factors
such as the position of the cucumber in the plant and the overall
layout of the field.

2. Approaching: Upon deciding the harvest order, the human har-
vester approaches the cucumber and begins hand manipulations.
The harvester carefully positions their hand and fingers to se-
curely grasp the cucumber, while being careful to avoid any
damage.

3. Grasping and cutting: After securely holding the cucumber, the
harvester uses their other hand to cut the pedicel using pruning
shears. This process requires precise cutting to cleanly sever the
pedicel without damaging the cucumber.

Considering these aspects, this paper proposes a human-centered
approach for an efficient cucumber-harvesting robot system. The pro-
posed system integrates harvest ordering, visual servoing, and an end-
effector. The objectives of this study are as follows: (a) determining
the harvest order that allows the robot to perform harvesting along
the optimal path, (b) guiding the end-effector to the pedicel by vi-
sually servoing the robot in real-time, (c) designing an end-effector
that can efficiently harvest long cucumbers, and (d) conducting field
tests to assess the performance of the proposed cucumber-harvesting
robot (Fig. 4). It is anticipated that the proposed cucumber-harvesting
robot system can effectively address the unique challenges of cucumber
harvesting to realize efficient and stable harvesting.

1.1. Related work

1.1.1. Harvest ordering
Most of the existing research on harvest ordering has been focused

on enhancing perception accuracy, given the complexities associated
with fruit detection in unstructured and dynamic operational environ-
ments. In other words, the literature on harvesting robots involves only
a few reports on harvest planning and ordering. Notably, the robot
operation may be inefficient in the absence of a path plan in the dense
and unstructured environments typically encountered in agricultural
applications. Thus, the optimized harvest order must be derived based
on detected information, similar to the sequence planning problem
commonly encountered in mobile robot applications (Pak et al., 2022).

In the initial studies on harvest ordering, the minimum path was
determined based on traveling salesman problems (TSP) to plan the
harvesting sequence (Edan et al., 1991). However, there remained con-
siderable scope for further optimization. Recently, research attention
has shifted toward task scheduling and planning (Kurtser and Edan,
2020). For example, given that harvest sequence planning relies on per-
ception, three sensing methods were defined and simulated. The travel
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Fig. 2. Previous harvesting robot systems: (a) tomato Jun et al. (2021), (b) cucumber (Park et al., 2022b).
Fig. 3. Human approach for harvesting cucumbers.
Fig. 4. Proposed cucumber-harvesting robot system.
cost was calculated based on the distance between the detected crops,
thus formulating a TSP problem with the objective of minimizing the
cost. Additionally, the harvesting cycle time was reduced by devising
motion plans aimed at minimizing the travel distance

Ning et al. (2022) developed a method for planning an anti-collision
picking sequence after accurate identification in a dense and complex
environment. A heuristic, experience-dependent method was chosen to
classify picking clusters and plan intra-group picking sequences. This
3

method resulted in enhanced harvesting efficiency because collision-
free path planning reduced damage and prevented shaking. However,
the cycle time was not reduced.

1.1.2. Visual servoing
In recent years, visual servoing has been increasingly used in

agricultural applications. As a robotic control system, visual servoing
frameworks use visual feedback from a camera to guide the movements
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Fig. 5. End-effector for a fruit and vegetable harvesting robot (Park et al., 2022a).
of the end-effector, such as a gripper or hand (Dewi et al., 2018). This
capability allows the robot to accurately track and approach harvest
targets, such as fruits and vegetables (Mehta et al., 2016). However, the
highly dynamic and unstructured nature of the operating environment
poses a significant challenge for the use of visual servoing in the
agricultural domain (Bai et al., 2023). Fields often feature uneven
terrains, and the position and orientation of individual plants can
drastically vary, which makes it difficult for the robot to accurately
track and approach targets. These aspects often result in decreased
performance and higher failure rates.

Various researchers have endeavored to address these challenges.
For example, Lee et al. (2012) developed algorithms for real-time object
detection and tracking, which enable the robot to accurately pinpoint
and track its target. Other researchers have deployed machine learning
techniques to enhance the adaptability of a robot to environmental
changes and unexpected situations. Mehta and Burks (2014) applied a
computationally efficient method for 3D fruit position estimation using
a monocular camera and introduced a rotation and hybrid translation
controller for manipulator control. Furthermore, Lehnert et al. (2019)
used a 3D camera array and a robotic manipulator to determine the
optimal view of an object in a highly occluded and unstructured
environment. Notably, most of these studies primarily focused on the
challenges associated with crop detection. In general, visual servo-
ing and detection issues are intertwined, and the incorporation of
visual servoing into agricultural robot systems necessitates substantial
research to surmount these obstacles (Fig. 5).

1.1.3. End-effector
An end-effector must exhibit excellent grasping and cutting abilities

to be effective in unstructured and unpredictable agricultural envi-
ronments (Huang et al., 2021). The grasping ability is necessary for
handling the external force generated by the contact between the robot
and the environment (e.g., other fruits, stems, or hanging gutters),
which is a long-standing challenge for harvesting robots. To solve this
problem, finger-type and suction-type grasping approaches have been
developed.

Finger-type approaches enable the realization of human-like grasp-
ing control (Gao et al., 2022b). Although optimized grasping control
for harvesting can be achieved, the end-effector is large (Roshanianfard
and Noguchi, 2020), which increases the possibility of collision in
agricultural environments and may result in undesired movement of the
target fruits. Such undesired movement can considerably decrease the
performance of harvesting robots (e.g., in terms of the harvest success
rate and harvest time)
4

Suction-type approaches are characterized by simple grasping con-
trol and low collision possibilities owing to the compact size of the
end-effectors (Hayashi et al., 2010; Huang et al., 2021). However, the
control strategy must be designed considering the texture, sphericity,
and stiffness of the target fruits and vegetables (Jun et al., 2021).

Previously, the authors of this work introduced an innovative end-
effector capable of harvesting a variety of fruits and vegetables without
requiring additional, complex controls (Park et al., 2022a). For efficient
harvesting, an end-effector was designed, integrating modules such
as a kirigami-based suction module for grasping, a circular-saw-based
cutting module, and a transportation module for directing the harvested
produce via free fall, aided by gravity, into the storage containers.
The effectiveness of each module in minimizing harvesting time and
enhancing productivity was validated through both laboratory and field
experiments.

1.2. Contribution

The contributions and novelty of this study can be summarized as
follows:

1. Development of a human-centered approach to cucumber har-
vesting that combines three key techniques for efficient and
stable harvesting.

2. Evaluation of the performance of the proposed harvesting robot
system through preliminary and field experiments.

3. Establishment of the foundation for future research to promote
the development of more efficient harvesting robot systems by
analyzing and discussing key issues through field experiments
conducted in three sites.

2. Harvesting robot system

2.1. Robot system setup

The proposed robot system consists of a manipulator, an end-
effector, and a mobile platform, as shown in Fig. 4. A manipulator
is attached to the mobile platform. An end-effector is attached to the
tool center point of the manipulator. The end-effector is equipped with
a local camera and cutting and suction modules. In addition, an LED
flash is installed that is always switched on to maintain an appropriate
amount of ambient light to facilitate detection. The hardware and
software setup is shown in Fig. 6. The controllers, which drive the
manipulator, end-effector, and mobile platform, are connected to and
controlled by the laptop. The laptop specifications are as follows:
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Fig. 6. Hardware and software setup of the proposed cucumber-harvesting robot system.
Fig. 7. Process flow of the proposed cucumber-harvesting robot system.
Intel (R) Core (TM) i7-9750H, 16 GB RAM, Geforce RTX 2060, with
Ubuntu 18.04. The laptop transmits and receives data to and from
each controller through robot operating system topics. The camera
is operated by local cameras attached to the end-effector and global
cameras attached to the manipulator.

The process flow of the proposed cucumber-harvesting robot sys-
tem is shown in Fig. 3. As shown in Fig. 7, the process is designed
considering the human approach. Similar to humans, the robot detects
the cucumber, determines the harvest order, approaches the target,
grasps it, and cuts it. The mobile platform locates a growing medium
and detects cucumbers using the global camera. Harvest ordering is
performed to determine the harvest order of 𝑛 detected cucumbers and
execute the first approach to the vicinity of the selected cucumber.
Next, a second approach is performed, in which pedicels are detected
and positioned using a local camera. Finally, the pedicel is cut after
grasping the cucumber with the end-effector. The robot then returns to
the initial pose and prepares for the subsequent harvest.
5

2.2. Harvest ordering

2.2.1. Perception
Compared with fruits such as tomatoes, apples, and oranges, the

detection of cucumbers is challenging as their color is similar to those
of the surrounding leaves and pedicels. Therefore, to effectively detect
cucumbers using machine vision in real-world scenarios, robust data
regarding cucumbers are required.

In this study, image data were collected from a cucumber farm
in Jeollabuk-do and Chungcheongnam-do, Republic of Korea. The
data were acquired using an RGB-D camera with a resolution of
1920 × 1080. Approximately 5000 images and 30 videos were collected
using three cameras, and 20% and 10% of these images were randomly
selected and used as the test and validation sets, respectively.

The YOLOV4 model, based on the YOLOV4-tiny architecture con-
sisting of 29 convolutional layers, was used. The YOLOV4-tiny is a
lightweight version of the YOLOV4 that is designed for fast and efficient
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Fig. 8. Harvest ordering.

object detection on mobile and embedded devices. Compared with
other deep learning-based detection methods, such as Faster RCNN,
SSD, RefineDet, and EfficientDet the YOLOV4-tiny can maintain a high
detection accuracy at a high speed (Cui et al., 2023). The cucumbers
detected with a confidence score of more than 0.95 were identified
by a bounding box. In other words, the cucumbers detected with high
confidence were accurately localized within the image. The results of
the cucumber detection system were evaluated based on the accuracy
of the bounding box in localizing the cucumbers in the images.

2.2.2. Genetic-algorithm-based harvest ordering
As shown in Fig. 3, the method adopted by humans to determine

the harvesting order was analyzed. According to the behavior of most
agricultural workers, the first cucumber to be harvested is typically
the one that is most visible and closest in proximity, followed by
cucumbers that are adjacent to the first one. In other words, once the
first cucumber in a group is determined, the harvesting order is based
on the distance from this cucumber.

Fig. 8 demonstrates that a smart farm environment can be dis-
cretized into a set of fruits, 𝑁 = {(𝑥1, 𝑦1, 𝑧1), (𝑥1, 𝑦2, 𝑧2),… , (𝑥𝑛, 𝑦𝑛, 𝑧𝑛)}.
The goal is to minimize the total harvesting time by optimizing the
path of the manipulator for each fruit in 𝑁 . The optimal order of
harvest depends on the robot kinematics and plant structure and can
be determined by applying the TSP to the fruit coordinates. A genetic-
algorithm-based approach was used to optimize the order of fruit
harvesting.

Generally, the solution to the TSP problem based on a genetic
algorithm is aimed at finding the shortest distance without considering
the environmental conditions. However, the fruit-growing environment
is unstructured and often presents several obstacles that must be con-
sidered. Therefore, the proposed method introduces a new harvesting
cost and models fruits in a manner that takes into account the environ-
mental characteristics. The objective is to derive an optimal harvesting
sequence that goes beyond simply minimizing the distance.

The fruits can be modeled as an undirected weighted graph with
vertices, 𝐺(𝑉 ,𝐸). The paths are the edges of the graph, and the dis-
tances of the paths are the weights of the edges. The optimal harvesting
sequence problem is aimed at determining if the graph has a TSP
solution with a maximum cost of 𝐾. If no path exists between multiple
6

Table 1
Results of preliminary experiment of harvesting
ordering.

TL (mm) OT (s)

Random 9674.33 68
Proposed 5722.96 54

crops, an adequately long edge is introduced to complete the graph
without affecting the optimal travel. After fruit localization, the fruits
identified in the scene are prioritized for optimizing the harvesting
sequence. It is assumed that the path of the manipulator to and from
each fruit remains linear. The harvesting cost is defined as the duration
of motion of the manipulator between two coordinates, i.e., the time
required by the robotic arm for performing point-to-point motion. In
this context, the harvesting cost is defined as the total path distance.

The path distance is calculated from the global camera to the
position of the fruits. The total distance is calculated as Eq. (1).

𝑑𝑖,𝑗 =
√

(𝑥[𝑖] − 𝑥[𝑗])2 + (𝑦[𝑖] − 𝑦[𝑗])2 + (𝑧[𝑖] − 𝑧[𝑗])2. (1)

Note that the harvesting order is calculated considering the har-
vesting difficulty in addition to the distance. Considering the harvest
ordering in the 𝑍 direction offers the advantage of robustness against
obstacle perception. Therefore, the weights are defined considering the
harvesting difficulty (i.e., the distance of 𝑧-direction), and the optimal
harvesting sequence is 𝑚𝑖𝑛(

∑

𝑤𝑖,𝑗 ).

𝑤𝑖,𝑗 = 𝑑𝑖,𝑗
√

(𝑧[𝑖] − 𝑧[𝑗])2. (2)

2.2.3. Preliminary experiment
The efficiencies of two methods, i.e., random selection and the

proposed method, for determining the harvesting order of four cu-
cumbers were evaluated. The end-effectors approached the cucumbers
in the order determined by each method. The following parameters
were measured during the experiment: travel length (TL), which is the
distance traveled by the end-effector, and operation time (OT), which
is the duration required for harvesting. The results are summarized in
Table 1.

The results show that OT and TL are reduced through harvest order-
ing. Notably, this experiment by detecting four cucumbers. Therefore,
the improvements are expected to be more notable when harvesting a
larger number of cucumbers. The gap between the TL and OT, which
served as a general quantitative indicator, is significant. This gap serves
to reduce the unnecessary movement of the robot, thereby conserving
battery time. Battery time is analogous to the physical stamina of
humans and cannot be ignored. Overall, the proposed harvest ordering
system can extend the battery of the robot.

2.3. Visual servoing

2.3.1. Pedicel detection for visual servoing
Fig. 3 shows that humans perform constant visual monitoring of the

position of the cucumbers to accurately access the pruning shears. Next,
the pedicel is placed in the cutting area of the pruning shears to the
desired pedicel cutting point. In other words, the humans update the
position of the pedicel in real-time and accurately position the pruning
shears at the desired point. Harvesting robots must exhibit similar
precision in their movements. To this end, a rapid pedicel detection
method and shear access system must be developed.

However, the achievement of precise access in field conditions is
challenging because of certain variables. For example, fruit motion
caused by external factors such as interference from the end-effector
during harvesting may result in manipulation errors in visual ser-
voing. To address this problem, the altered pose of the fruit must
be rapidly detected and corrected. Recent detection studies have ex-
tensively utilized deep-learning-based detection methods. According
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Fig. 9. Process flow of cucumber pedicel detection.
Fig. 10. Pedicel detection process: (a) background removal, (b) noise removal using a median filter, (c) classification of only the cucumber shape with an aspect ratio of 1:3–1:6,
(d) extraction of the approximate position of the pedicel, (e) pedicel feature extraction using fast point feature histogram (FPFH) (red points).
to Gao et al. (2022a), a detection method with an average precision
of 99.35% for fruit and stem detection can be considered adequately
reliable. This method can be executed on a CPU with a frame rate of 2–5
frames per second (FPS). Efforts have been made to enhance the frame
rate by applying a lightweight fruit detection algorithm, achieving a
high frame rate ranging between 5.0 and 24.8 FPS (Zhang et al., 2021).
Notably, the existing studies focused solely on detection, whereas when
incorporating visual servoing for harvesting, it is important to estimate
the appropriate grasping end-effector posture for each fruit pedicel
before performing the manipulation (Wang et al., 2022).

Kim et al. (2022) introduced a deep learning network pipeline
named Deep-ToMaToS, which can simultaneously estimate six-
dimensional (6D) poses (3D transformation and 3D rotation) with
a high average accuracy of 96%. However, this 6D pose estimation
process necessitates a large inference time, which decreases the frame
rate from 45.81 FPS to 7.26 FPS. Thus, when utilizing deep learning for
pose estimation, the frame drop must be considered. In addition, the
learning process requires a considerable amount of data. Overcoming
the challenge of real-time pose updates remains critical to enhance the
performance of visual servoing.

In this study, a computer-vision-based detection method was used
for fast pedicel pose estimation. This method aims to enhance vi-
sual servoing performance by accurately estimating poses despite the
shaking of fruits, as mentioned previously. Pedicel detection and pose
estimation are realized in a simple manner. Moreover, the proposed
approach is versatile and can be easily applied to other fruits without
the need for learning processes In the proposed framework, pedicel
detection is realized using a local camera attached to the end-effector,
as shown in Figs. 4 and 9. Pedicel detection based on this process flow
is shown in Fig. 10.

The background is removed using depth data from the RGB-D
image to remove any obstacles or distractions that may interfere with
7

the shape detection of the cucumber. Histogram equalization is ap-
plied to ensure reliable stability under various lighting conditions
in complex and dynamic outdoor environments. This process allows
the hue-saturation-value (HSV) color space to be more uniformly dis-
tributed, leading to increased stability in the thresholding process
(Fig. 10(a)). To reduce shape detection failures due to noise, a median
filter is applied, and remaining obstacles (i.e., the end-effector, trellis
rope, and clamp) that are not cucumber-like (i.e., not green) are
removed from the HSV color space (Fig. 10(b)). Therefore, considering
the characteristics of the green series of cucumbers, the thresholds are
set as (𝐻 ∈ [60, 100], 𝑆 ∈ [75, 255], 𝑉 ∈ [80, 255]).

Next, the characteristics of long cucumbers are exploited to classify
the objects in the scene. Research suggests that cucumbers exhibit a
length and diameter of approximately 250 mm and 40 mm, respec-
tively, resulting in a ratio of 1:6. Therefore, the system is configured
to detect only the cucumber shapes that fit this ratio among all the de-
tected shapes. Additionally, only half of the cucumber shape is detected
as the region of interest (ROI) of the local camera during the approach
of the end-effector. Thus, the system is designed to detect shapes
within a ratio range of 1:3 to 1:6. The edges of the detected cucumber
shapes are extracted and fitted with an ellipse, and the height and
width data of the ellipse are adjusted to fit the shape of the cucumber
(Fig. 10(c)).

Finally, the intersection of the extracted edges and centerline of
the ellipse is used to draw a circle representing the average pedicel
pose (Fig. 10(d)). This pedicel pose is converted from pixel data on the
two-dimensional (2D) plane to feature points on the 3D point cloud
using camera parameters and depth data. The adjacent point clouds are
then clustered to form an ROI. The fast point feature histogram (FPFH)
algorithm is used to rapidly extract the feature points of the pedicel.
The FPFH algorithm represents the geometric feature of the surface at
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Fig. 11. Fast point feature histogram (FPFH) algorithm.

a given sample point and its neighboring points. This information is
used to define a local coordinate system and extract feature points using
curvature and direction differences between the cucumber and pedicel
surface normal vectors (Fig. 10(e)). As shown in Fig. 11, given a set of
points 𝑃𝑠 and its neighboring points 𝑃𝑡 in the 3D point cloud, the FPFH
algorithm first defines a local coordinate system (𝑢, 𝑣,𝑤) as follows:

𝑢 = 𝑛𝑠, (3)

𝑣 =

(

𝑝𝑡 − 𝑝𝑠
)

|

|

𝑝𝑡 − 𝑝𝑠||
× 𝑢, (4)

𝑤 = 𝑣 × 𝑣, (5)

where 𝑛𝑠 is the surface normal vector of 𝑃𝑠. Next, a set of tuples (𝛼, 𝜙, 𝜃)
between each point and its neighboring points is computed using the
local coordinate system:

𝛼 = 𝑣 ⋅ 𝑛𝑡, (6)

𝜙 = 𝑢 ⋅

(

𝑝𝑡 − 𝑝𝑠
)

𝑑
, (7)

𝜃 = arctan
(

𝑤 ⋅ 𝑛𝑡, 𝑢 ⋅ 𝑛𝑡
)

, (8)

where 𝑑 = |

|

𝑝𝑡 − 𝑝𝑠|| is the Euclidean distance between 𝑃𝑠 and 𝑃𝑡, and 𝑛𝑡
is the surface normal vector of 𝑃𝑡. Finally, the FPFH histogram of 𝑃𝑠 is
computed by weighting the simplified point feature histogram (SPFH)
values 𝜔𝑖 of its neighboring points:

𝐹𝑃𝐹𝐻
(

𝑝𝑠
)

= 𝑆𝑃𝐹𝐻
(

𝑝𝑠
)

+ 1
𝑘

𝑘
∑

𝑖=1

1
𝜔𝑖

⋅ 𝑆𝑃𝐹𝐻
(

𝑝𝑖
)

. (9)

The FPFH descriptor is calculated for each point in the point cloud,
and it represents the distribution of the local surface normal ori-
entations around the point. The calculation of the FPFH descriptor
involves considering a set of 𝑘 neighboring points around each point
and computing the histogram of their surface normal orientations.
The weight of each neighboring point can be calculated based on a
weighting function, such as the inverse distance or 𝜔𝑖. The histograms
of the cucumber fruit section and pedicel section are different, and this
difference is exploited to extract the point cloud of the pedicel portion.

The optimization problem can be formulated as follows: Given two
point clouds 𝑃 and 𝑄, the objective is to find the transformation matrix
𝐓 such that the transformed source point cloud 𝑃 ′ best matches the
target point cloud 𝑄 in a least-squares sense. Here, 𝐓 can be estimated
by minimizing the sum of the squared distances between the closest
8

points in the two clouds:

𝐓 = argmin
𝐓

𝑛
∑

𝑖=1
‖𝐓𝑝𝑖 − 𝑞𝑗(𝑖)‖

2. (10)

where 𝑝𝑖 is the 𝑖th point in the source point cloud, 𝑃 , 𝑞𝑗(𝑖) is the closest
point in 𝑄 to 𝑝𝑖, and 𝑛 is the number of points in 𝑃 . The ICP algorithm is
used to solve this optimization problem by iteratively refining an initial
estimate of 𝐓. In each iteration, the algorithm computes the closest
points between the source and target point clouds, updates 𝐓 based on
the closest points, and repeats the process until convergence or until
the maximum number of iterations is reached.

The attitude and orientation of 𝐓 can be obtained using the orien-
tation representation in the rotation matrix. In particular, a rotation
matrix is a square matrix that represents a rotation in 3D space and
can be used to calculate the attitude and orientation of 𝐓.

2.3.2. Position-based visual servoing (PBVS)
PBVS is applied for robot-based cucumber harvesting. PBVS involves

calculating the desired pose of the end-effector based on the coordi-
nates of a target feature point, such as the cutting point of the cucumber
pedicel. The desired pose of the end-effector is calculated using 𝐓.

Specifically, 𝐓 is calculated based on the pose of the target feature
point in the 3D space and pose of the end-effector in the image plane.
As shown in Fig. 12(a), the desired pose of the end-effector, 𝐹𝑐∗, in
the image plane is represented as a homogeneous image coordinate.
The current pose of the end-effector, 𝐹𝑐 , in the image plane can be
represented as a homogeneous image coordinate. The error 𝑒 between
the desired and current end-effector poses can be calculated as follows:

𝑒 = 𝐹𝑐∗ − 𝐹𝑐 . (11)

𝑒 is used in the control law to generate the joint velocity command, 𝝎,
for the robot arm. The control law can be represented as follows:

𝝎 = −𝜆𝐉+(𝐹𝑐∗ − 𝐹𝑐 ). (12)

where 𝝎 is the joint velocity command, 𝐉 is the Jacobian matrix, and
𝜆 is a gain parameter that indicates the tracking speed and stability.
A higher 𝜆 results in faster tracking but may lead to oscillations
and instability. In contrast, a lower 𝜆 results in slower tracking but
improved stability. The value of 𝜆 must thus be appropriately tuned to
optimize the system performance.

By implementing PBVS to track the cutting point of the cucumber
pedicel, the robot can maintain the correct cutting pose, even if the
cucumber shakes or moves due to interference from the robot move-
ment. This framework thus improves the accuracy and reliability of
cucumber harvesting by robots. Notably, 𝐓 plays a crucial role in PBVS
by providing the necessary information to calculate the desired pose of
the end-effector based on the target feature point.

2.3.3. Preliminary experiment
A preliminary experiment was performed to validate the proposed

visual servoing system for robot-based cucumber harvesting. The ex-
periment was performed in a laboratory environment that mimicked a
cucumber smart farm greenhouse. Eight motion capture cameras were
used to measure the pose of the cucumber and end-effector during the
experiment.

Three markers were attached to the model cucumber and end-
effector, as shown in Fig. 12(b). The target pose was the pose in which
the cucumber pedicel entered the cutting area of the end-effector. The
experiment was repeated 100 times, in which the end-effector was
moved from an arbitrary pose to the target pose. The objective was
to manipulate 𝐹𝑐 in the image plane to shift to 𝐹𝑐∗. 𝐹𝑐 measured by
the motion capture system was set as 𝐹𝑎. 𝐹𝑐∗ was set to ensure that
the pedicel can be positioned in the end-effector cutting area. The pose
error (PE) was calculated as follows:

𝑃𝐸 = 𝐹 − 𝐹 . (13)
𝑐∗ 𝑎
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Fig. 12. Position-based visual servoing (PBVS): (a) visual servoing process, (b) motion capture camera view.
Table 2
Results of the preliminary experiment for visual servoing.

Position [mm] Orientation [deg]

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

PE average 1.44 −2.45 −0.29 −0.25 0.63 0.91
RMSE 4.90 4.73 1.95 1.71 3.38 2.74

The root mean square error (RMSE) was used to calculate the effective
value:

RMSE =

√

∑𝑛
𝑖=1 𝑃𝐸2

𝑛
. (14)

The results of the preliminary experiment were used to evaluate the
performance of the proposed visual servoing system. The accuracy and
reliability of the system were determined by comparing 𝐹𝑐 to 𝐹𝑐∗. The
experimental results are summarized in Table 2. The results show that
the pedicel can be located within the cut area of the proposed end-
effector, as shown in Fig. 13. Because the pedicel can be positioned
within the cutting area, the end-effector can be efficiently manipulated
to the pedicel in real-time through the proposed pedicel detection
and visual servoing strategy. Furthermore, the FPS achieved by the
proposed method (16–23 for images with 640 × 480 pixels) is higher
than that of deep learning methods. This high FPS ensures real-time
performance during the implementation of visual servoing.

2.4. End-effector

The end-effector functions similar to a human hand in the human-
centered harvesting approach. As shown in Fig. 3, humans perform
harvesting by isolating individual fruits by separating the pedicels con-
nected to the stem. The harvesting method involves plucking, twisting,
and cutting processes. However, the end-effector of harvesting robots
is typically composed of a rigid body, and thus, plucking and twisting
may damage the fruit surface. To address this problem, the concept
of manual harvesting, in which fruits are treated as soft materials and
pedicels are used to harvest fruits, has been adopted.

Specifically, following this mechanism, an end-effector for tomato
harvesting, a spherical fruit, was developed, and its performance was
9

Fig. 13. Position error of the end-effector.

evaluated in field conditions. Unlike tomatoes, cucumbers are cylin-
drical and have a bumpy surface. In general, rod-shaped fruits are
more susceptible to shaking than sphere-shaped fruits because of the
large distance between the pedicel–fruit contact position and center of
mass. Therefore, the design of an end-effector for rod-shaped fruits,
such as cucumbers, requires more rigid considerations. In this study,
the previously developed end-effector was modified to suit cucumber-
harvesting requirements. Particularly, the proposed end-effector was
designed to imitate manual harvesting mechanisms with cutting and
grasping modules. The following sections describe the end-effector and
highlight its novelty compared with the existing end-effectors.

2.4.1. Cutting module
In this study, a circular saw-type cutting module was used for the

harvesting process. Cutting, a critical step in manual harvesting, is typ-
ically executed using scissors. Previously, Jun et al. (2021) introduced
a scissor-type end-effector for tomato harvesting. However, the large
size of scissor-type end-effectors often leads to conflicts in dense and
irregular agricultural environments. These conflicts with environmental
objects can introduce errors in robot perception and control, resulting
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Fig. 14. Cutting module of the proposed end-effector: (a) top view, (b) bottom view.
Fig. 15. Mechanism of the proposed cutting module: (a) the pedicel enters the cutting area, (b) the servo motor rotates to pull the traction supporter to tow the pedicel, and the
dc motor rotates the circular saw, (c) the pedicel is fully towed to the circular saw, (b) the pedicel is cut, and the servo motor is reversed to return the traction supporter to its
initial position.
in reduced overall performance in terms of the harvesting time and
success rate.

To address this issue, a compact circular saw-type end-effector
was designed in this study to minimize undesirable contact with the
environment (Park et al., 2022a). Generally, a circular saw tends to
recoil off the pedicel due to its rotation. To overcome this problem, a
traction supporter that imitates manual harvesting mechanisms, specif-
ically dual-arm mechanisms, was introduced. In manual harvesting
operations, one hand is used for cutting, while the other is engaged
in holding and pulling the cucumber and drawing the pedicel to the
cutting blade or scissors. The traction support feature of the circular
saw-type end-effector emulates this second hand.

The traction supporter holds the cucumber and guides the pedicel
into the circular saw of the cutting module. This holding and pulling
action enables a reliable cut regardless of the pedicel thickness. The
performance results of the circular saw-type cutting module demon-
strated a 93.8% success rate when applied to pedicels with a thickness
of 4– 11 mm, given an end-effector angle of 0◦. Field observations have
indicated that the thickness of cucumber pedicels typically falls within
the 3–6 mm range, which suggests that the circular saw-type cutting
mechanism can be efficiently utilized under such conditions. The focus
of this study was to develop a three-point linkage cutting module
to enhance the performance of the traction supporter and ensure a
consistent pedicel length. A limitation of circular saw-type end-effectors
was identified: Such end-effectors fail to transmit sufficient force to pull
a thick tomato pedicel due to constraints in the traction mechanism.
Consequently, modifications were made to the traction mechanism, as
shown in Fig. 16, to augment the force conveyed to the pedicel via the
traction supporter.

The traction mechanism within the three-point linkage cutting mod-
ule was divided into traction and open-close operations. The traction
10
Fig. 16. Simplified offset slider-crank linkage of the cutting module.

was powered by a slider-crank mechanism linked to the servo motor,
as illustrated in Fig. 15. The function of the slider-crank mechanism
was to pull the pedicel into the circular saw, making it an essential
component of the traction operation.

For the open-close operation, two links were interconnected based
on the crank radius, with the discrepancy in the radii leading to
a difference in the operational range between the two links. Each
slider was connected to these two links, and the sliders, in turn, were
connected to disparate positions on the traction supporter.

By exploiting the differences in the connection positions and op-
erational range, a three-point linkage structure was generated. This
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Table 3
Design parameters for the offset slider-crank.

Parameter Symbol Short radius linkage Long radius linkage

Angle [deg]

𝜃1 0 0
𝜃2 60 60
𝜃3 165 175
𝜃4 90 90

Length [mm]

𝐿1 32 38
𝐿2 12 17
𝐿3 30 30
𝐿4 17 17

structure enabled the traction supporter to execute an open–close op-
eration, providing access to the cutting area of the end-effector in an
idle state. Even in the presence of perception and control errors during
the approach process, successful entry could be achieved due to the
presence of an approach margin. The following expression pertains to
the vector equation of the offset slider-crank in the proposed cutting
module:

−⃖⃖⃖⃖⃗𝑅1 + ⃖⃖⃖⃖⃗𝑅2 − ⃖⃖⃖⃖⃗𝑅3 − ⃖⃖⃖⃖⃗𝑅4 = 0. (15)

As depicted in Fig. 16, the vector equation of slider-crank can be
represented as follows:

−𝐿1𝑒𝑗𝜃1 + 𝐿2𝑒𝑗𝜃2 − 𝐿3𝑒𝑗𝜃3 − 𝐿4𝑒𝑗𝜃4 = 0. (16)

The design parameters for the offset slider-crank of the proposed cut-
ting module are presented in Table 3.

The operating range of the link connected to the crank can be
expressed based on Euler’s formula and the design parameters. The
operating range of the slider can be calculated as

𝑒𝑗𝜃 = 𝑐𝑜𝑠𝜃 + 𝑗𝑠𝑖𝑛𝜃,
𝐿1 = 𝐿2𝑐𝑜𝑠𝜃2 − 𝐿3𝑐𝑜𝑠𝜃3.

(17)

The cutting module was equipped with a local camera for pedicel
detection and a grasping module at the bottom. Details of the grasping
module are presented in the following section.

2.4.2. Grasping module
The grasping module in the proposed cucumber-harvesting system

was significantly modified compared with the existing end-effector.
This module plays a crucial role in mitigating the reaction force re-
sulting from the rotation of the circular saw in the cutting module.
In the previous framework, a suction-cup-based approach was used
for the grasping module due to its compact size and simple control
mechanism. The circular-saw-type end-effector in the previous research
utilized conical-shaped general suction cups to grip tomatoes. This type
of a grasping module is generally suitable for spherical fruits, such as
citrus fruits or apples.

However, cucumbers present a different challenge due to their rod-
like shape and low sphericity. Applying the existing conical suction cup
to cucumbers may not ensure a secure grip, as the attachment success
may vary with the approach position. Restricting the attachment point
is not beneficial in reducing the reaction force, given that defining a
generalized approach position is challenging in non-standard agricul-
tural environments. Therefore, the conical suction cup of the existing
end-effector is not well-suited for cucumber attachment scenarios.

To solve this problem, as depicted in Fig. 4, a grasping module
designed for grasping cylindrical fruits such as cucumbers was estab-
lished. Similar to the existing framework, a suction-cup-based grasping
module was used to ensure compactness. However, the grasping power
was increased by changing the circular grasping area of the suction cup
to an elliptical shape. The dimensions of the ellipse were determined
based on the minimum values obtained by examining 10 commercially
available cucumbers. The grasping area of the suction cup, which is
related to the grasping power, can be expressed as follows:

2 2 2 2 2 2
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𝑏 𝑥 + 𝑎 𝑦 = 𝑎 𝑏 . (18) t
In this equation, the values of 𝑎 and 𝑏 are 14 and 10, respectively.
By changing the grasping area to an ellipse, the grasping area can be
kept constant regardless of the grasping position. Using the calculated
grasping area, the grasping power can be determined as follows:

𝐹𝑧,𝑚𝑎𝑥 = 𝜋𝑟2𝛥𝑉 , (19)

where 𝛥𝑉 represents the pressure difference between the suction cup
and atmosphere. The grasping area considerably affects the grasping
force, as indicated in the equation. If the grasping area is not suffi-
cient, the grasping force may not be adequate, and grasping may fail
depending on the grasping position.

2.4.3. Preliminary experiment
The performance of the end-effector for tomatoes has already been

validated in the field. Thus, this end-effector can be considered suitable
for cutting cucumber pedicels, which are typically thinner (3–6 mm)
than tomato pedicels (4–11 mm). However, a key difference between
this study and the previous study pertains to the evaluation of the
cucumber grasping. Specifically, in this study, the feasibility of grasping
cucumbers was evaluated in test beds resembling cucumber farms. The
performance metric was the grasping success rate, which is defined
as maintenance of the grip even when the robot returns to its initial
position after adsorption. Evaluating the success rate of cucumber
grasping is important for addressing the issue of grasping ability being
dependent on the grasping position in cucumber harvesting scenarios.
The grasping module of the proposed end-effector was compared with
the conical suction cup used in the existing framework. For the prelim-
inary experiment, a test bed was set up to allow cucumbers to hang
like they would in real fields. The results revealed that the proposed
end-effector has a grasping success rate of 100%, whereas the success
rate of their previous end-effector was 0%.

3. Field experiments

3.1. Experimental design

The experimental setup is shown in Fig. 4. Field tests were con-
ducted by integrating each verified system in the overall framework.
Experiments were conducted in actual cucumber greenhouses to verify
the effectiveness of the proposed cucumber-harvesting robot system. As
shown in Fig. 17, the experiment was conducted in three greenhouse
environments to examine the effect of the environmental conditions
on the system performance. The study areas were Boryeong Green
monsters (GM), Chungju Fresh-farm (FF), and Sangju smart-valley (SV),
in which Cucumis sativus L are grown. Experiments were conducted in
ifferent sites because the pedicel thickness, length, and space between
he stems and pedicels differ across the field. The harvesting sequence
as as shown in Fig. 18.

The average parameters in the three sites are shown in Fig. 19.
he local camera used in the system has a maximum detection depth
etween 70 and 500 mm. The global camera used in the system has a
aximum recognition depth between 28 and 3000 mm. The effective
epth is appropriate because the depth required for detection with the
lobal camera is about 1000 mm and the depth required for detection
ith the Local camera is about 300 mm. In addition, the intertidal
istance between cucumber stems is about 400 mm, and 3–4 stems are
etected within the ROI of the global camera (the average number of
ucumbers is 4–6). The distance between the mobile chassis and the
lanting row depends on the size and shape of the mobile platform
nd greenhouse layout. A reasonable distance is typically set between
00 and 700 mm to allow adequate space for maneuvering and avoid
ollisions.

To verify classification performance, measure Precision, Recall, Ac-
uracy, and F1-score based on classification evaluation metrics. True
ositive (TP) refers to the detection of cucumbers that are present in

he field and harvested correctly by the end-effector. False positive (FP)
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Fig. 17. Experimental environment and cucumber characteristics in three sites.
Fig. 18. Harvest in progress according to the harvest sequence of the proposed cucumber-harvesting system: (a) The global camera detects cucumbers and approaches the nearest
cucumber, (b) the local camera detects the cucumber pedicel and approaches the end-effector, (c) the pedicel is input to the end-effector cutting area, and (d) the end-effector
cuts the pedicel to complete the harvest and returns to its initial position.
refers to the detection of cucumbers that are not present in the field but
are still harvested by the end-effector. False negative (FN) refers to the
failure of the end-effector in recognizing cucumbers that are present
12
in the field, resulting in these cucumbers not being harvested. True
negative (TN) refers to the correct detection of cucumbers that are not
present in the field or not harvested by the end-effector.
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Fig. 19. Parameters in the cucumber greenhouse environment.
The precision is calculated as

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (20)

The recall can be calculated as

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (21)

The accuracy is calculated as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

, (22)

The F1-score is calculated as

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

. (23)

In general, the F1-score is a valuable measure of the overall accu-
racy of a classification system when the data are imbalanced, i.e., there
is a significant disparity between the number of positive and negative
cases. In such cases, the use of only precision or recall as a single metric
may be misleading. Because the F1-score considers both the precision
and recall, it can effectively indicate the overall performance of the
system.

3.2. Results and evaluation

The success rate of the proposed cucumber-harvesting robot system
was calculated by dividing the yield into detection, entry, and cutting.
A total of 265 cucumbers were harvested from the three sites (GM,
SV, and FF), with 150 successful harvests. The system performance
was evaluated in terms of the success rate, harvest time, precision,
and recall rate. As shown in Table 4, the success rate for the GM site
was 56.3%, with 98 successful detections out of 112, 82 successful
entries out of 112, and 63 successful cuts out of 112. The SV site had
a success rate of 50.9%, with 35 successful detections out of 53, 29
successful entries out of 53, and 27 successful cuts out of 53. The FF
site had a success rate of 60.0%, with 89 successful detections out of
100, 63 successful entries out of 100, and 60 successful cuts out of
100. The results showed that the success rate of the proposed system
ranged from 50.9% to 60.0% at different sites, with an overall success
rate of 56.6%. The average damage rate for the harvested cucumbers
was 4.7%, with seven damaged cucumbers. The FF site exhibited the
highest success rate of 60.0%. These results indicated that the system
performed differently in different environments, and further research
is needed to optimize the system performance in different conditions.

The harvesting time is shown in Fig. 20. As shown in Fig. 18, first,
the global camera detected the cucumber, and then, the local camera
detected the cucumber pedicel. Next, the cucumber was cut, and the
13
Fig. 20. Harvesting time by sequence.

system returned to its initial pose. The average harvesting time for the
first and second approaches was 13.2 s and 30.7 s, with a range of
11–15 s and 21–42 s, respectively. The average cut-off time was 5 s,
with a range of 2–7 s. The return times were mostly constant, with an
average of 7.3 s and a range of 7–8 s.

Table 5 summarizes the results of the performance evaluation of
the cucumber-harvesting robot system at the three sites. The system
performance was evaluated based on four metrics: precision, recall, ac-
curacy, and F1-score. The precision represents the fraction of correctly
harvested cucumbers to the total number of harvested cucumbers. The
recall represents the fraction of correctly harvested cucumbers to the
total cucumbers present in the field. The accuracy represents the ratio
of correct predictions to the total number of predictions. The F1-score
is the harmonic mean of precision and recall and provides a balanced
picture of the overall performance of the system.

For the GM site, the precision, recall, accuracy, and F1-score were
95.1%, 91.6%, 87.5%, and 93.3%, respectively. For the SV site, the pre-
cision, recall, accuracy, and F1-score were 81.4%, 77.7%, 66.0%, and
79.5%, respectively. For the FF site, the precision, recall, accuracy, and
F1-score were 95.7%, 92.7%, 89.0%, and 94.2%, respectively. Although
the proposed system achieved satisfactory precision and accuracy, there
is scope for further improving the recall.

In general, it is challenging to set up a motion capture system in the
field, as illustrated in Fig. 12(b), which makes it difficult to accurately
measure locations and determine the accuracy indicators in the field.
To overcome this challenge, the positional accuracy was evaluated by
measuring the length of the cut pedicel. The assumption was that the
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Table 4
Field experiment results of the proposed cucumber-harvesting robot system.
Sites Evaluation Harvest sequence Total

Detection Entry Cutting Harvesting success Damage

Green monsters (GM) Success rate (%) 87.5 83.7 76.8 56.3 4.8
Number of successes (pcs) 98 82 63 63/112 3

Sangju Smart-valley (SV) Success rate (%) 81.4 82.9 93.1 50.9 7.4
Number of successes (pcs) 35 29 27 27/53 2

Fresh-farm (FF) Success rate (%) 89.0 70.8 95.2 60.0 3.3
Number of successes (pcs) 89 63 60 60/100 2

Total Success rate (%) 83.8 78.4 86.2 56.6 4.7
Number of successes (pcs) 222 174 150 150/265 7
Table 5
Pedicel detection precision, recall, accuracy, and F1-score for different sites.

Site Precision Recall Accuracy F1-score

Green monsters (GM) 0.951 0.916 0.875 0.933
Sangju Smart-valley (SV) 0.814 0.777 0.660 0.795
Fresh-Farm (FF) 0.957 0.927 0.890 0.942

Fig. 21. Length of the cut pedicel.

accuracy of the approach could be determined if the pedicel was cut
in the correct pose. The experiment results are shown in Fig. 21. The
optimal cut length for the pedicel, as preferred by different farmhouses,
was between 0 and 30 mm, and all the cuts were made within this
range. This finding highlighted that the success rate of the harvest can
be increased by improving the accuracy of cucumber detection and
reducing interference from the end-effector. Furthermore, the results
of the preliminary experiment demonstrated that the proposed system
can achieve a high positional accuracy.

4. Discussion

4.1. Failure cases

The results of extensive experiments showed that the proposed
cucumber-harvesting robot system performed well in the detection and
cutting sequences (success rates of 83.8% and 86.2%, respectively) but
had lower success rates in the entry sequence (78.4%). Furthermore,
the total harvesting success rate was only 56.6%. Several causes of
harvest failure were identified and broadly categorized as follows:

• Pedicel detection failed due to obstacles (stems, leaves, etc.).
• The stem and pedicel both entered the cutting area owing to the

width of the end-effector pedicel entrance.
• Interference occurred between the stem and pedicel during entry

because of the size of the end-effector.

The primary cause for harvest failure was the presence of obstacles
(stems, leaves, etc.), which made it challenging to detect cucumbers
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Fig. 22. Analysis of field test results by harvest sequence.

and cucumber pedicels. The experimental results presented in Table 4
were analyzed to identify the reason for the problems. As shown in
Fig. 22, the detection success rate varied across the study sites. Table 5
shows that the detection success rate at SV (precision of 0.814, recall
of 0.777, accuracy of 0.660, and F1-score of 0.795) was lower than
those at the other two sites. The detection success rate was affected
by the presence of defoliation in the farmhouses: Specifically, GM and
FF had a more organized cultivation environment due to defoliation,
resulting in fewer leaves and higher detection success rates. To address
the challenge of detecting cucumbers and pedicels in the presence
of obstacles, it is necessary to develop a system that can accurately
detect and access cucumbers even in scenarios involving environmental
disruptions.

The second main reason for harvest failure was the width of the end-
effector pedicel entrance, which allowed both the stem and pedicel to
enter the cutting area. As shown in Fig. 23(a), the space between the
stem and pedicel is narrow. Fig. 22 shows that among the three sites, FF
corresponded to the lowest entry success rates (70.8%, compared with
83.7% and 82.9% at GM and SV, respectively). This phenomenon of
both the stem and pedicels entering the cutting area occurred because
of the distinct characteristics of the cucumbers at each site. Fig. 17
shows that the space between the stem and pedicel is the smallest
at FF. As shown in Fig. 14, the width of the end-effector pedicel
entrance is 36 mm, which can accommodate both the stem and pedicel.
Twelve of the 26 failed entries after detection, i.e., 46.2%, occurred at
a high rate (6.1% for GM and 6.9% for SV). The end-effector pedicel
entrance width must be decreased during the design phase to avoid
such problems. Assuming that the end-effector is miniaturized, the
entry success rate at FF is expected to be increased to 84.3%, with the
values for GM and SV improving to 88.8% and 88.6%, respectively.

In particular, the end-effector size considerably affects the success
of harvesting cucumbers as it affects the ability of the end-effector
entering the space between the stem and pedicel. As shown in Fig. 22,
the entry success rate was low at GM owing to the short and thick
pedicel of the cucumbers at this site, resulting in interference at the
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Fig. 23. Problems encountered by the end-effector during harvesting: (a) The stem and pedicel both entered the cutting area owing to the width of the end-effector pedicel
entrance, (b) the end-effector size leads to interference between the stem and pedicel during entry, (c) the end-effector guide size leads to interference between the stem and
pedicel during entry.
neck of the fruit, as shown in Fig. 23(b). The same phenomenon fre-
quently occurred when the pedicel was towed with a towing supporter,
as shown in Fig. 23(c). The guide to the cutting module in the system
helped guide the pedicel to a point on the circular saw to ensure
fast and accurate cutting. However, the guide may disrupt the cutting
process if the pedicel is short and thick, as in the GM environment. To
overcome this issue, the end-effector must be miniaturized. The end-
effector cutting module of the proposed system has a novel linkage
structure, as shown in Fig. 15, which is simple and can facilitate
the miniaturization of the device. Specifically, miniaturization can
be achieved by simplifying the linkage structure and frame of the
end-effector.

4.2. Future work

The proposed robot can be further improved by focusing on the
following aspects: (1) miniaturization of end-effectors, (2) development
of robust visual servoing through accurate pedicel detection, (3) devel-
opment of lift platforms for a wide range of harvests, and (4) extension
of the proposed method to harvest a variety of fruits.

As a follow-up to this study, ongoing efforts are being made to
miniaturize the end-effector. Previous studies have shown improve-
ments by transitioning from a scissors-type end-effector structure (Jun
et al., 2021) to a circular saw-type end-effector (Park et al., 2022a).
In particular, these modifications have resulted in a high cutting rate
with reduced fruit damage, thereby enabling efficient pedicel cutting.
However, the mechanism used by such end-effectors requires two types
of motors: a linear servo actuator and a DC motor. Servo motors exhibit
reduced torque with decreasing size, and the cost increases as the
required torque increases. Furthermore, the length of the end-effector
must be increased according to the stroke of the linear servo actuator.
To address these challenges, the end-effector has been enhanced in
this study by adopting a linkage structure, as shown in Fig. 15. This
linkage structure converts circular motion into linear motion and allows
a typical servo motor to generate linear motion similar to a linear
servo actuator. This modification can promote motor miniaturization
and yield a high cutting success rate, as indicate in Table 4. Although
the proposed end-effector is still not adequately compact, the miniatur-
ization of the linkage structure can help obtain a more compact design.
In future work, the proposed end-effector will be miniaturized by using
a more compact design.

Second, this study aims to realize robust visual servoing through
efficient pedicel detection. The current pedicel detection system uses
the FPFH algorithm to search for pedicel cut points, which results in
a higher frame rate than that achieved using deep learning. However,
the experimental results summarized in Table 4 indicate that detection
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based on geometry has a low success rate due to obstacles such as leaves
and stems. This aspect was noted to be particularly challenging in this
study as the target fruit, cucumbers, had a color almost identical to
that of the stems and pedicels. To address this issue, a system is being
designed that combines the proposed pedicel detection technology with
deep learning to achieve fast detection. The proposed pedicel detection
technology can extract feature points using FPFH and extract the
pedicels by exploiting the curvature differences when the approximate
location of the pedicel is known. By implementing deep-learning-based
2D location estimation, the orientation can be estimated, resulting in
improved performance during frame drops. In addition, video stabiliza-
tion techniques are being explored to ensure robustness against shaking
by stabilizing motion using the extracted point cloud as a key point. The
objective is to minimize shaking by predicting the key point movement
through filters. In summary, the combination of the proposed pedicel
detection technology, deep learning, and video stabilization is expected
to improve the detection accuracy and enable robust visual servoing.

Third, the range of operation of the harvest robot is limited, mainly
due to environmental factors. For instance, although the fruits located
at higher positions can be successfully detected by the vision system,
they remain unreachable due to the workspace constraints. Conse-
quently, a significant portion of potential harvest cannot be accessed
by the robot. These workspace limitations predominantly stem from
the physical structure of the robotic arm and its range of motion,
which fails to extend sufficiently high to reach fruits positioned higher
on the plants. This configuration hinders efficient and comprehensive
harvesting. A potential solution to this problem is to incorporate a
lift mechanism into the robotic system. This adjustment can extend
the vertical reach of the robot, enabling access to higher fruits on the
plant. By incorporating this lift mechanism, the range of harvest able
areas can be significantly expanded, thereby enhancing not only the
efficiency of the robot but also its overall yield. Such a robot would be
able to execute a more comprehensive and effective harvesting process
that aligns better with the actual requirements of the field conditions.

Lastly, this study aims at expanding the applicability of the harvest-
ing robot by enabling the identification of fruits and vegetables such
as tomatoes, Korean melons, and paprika. Enhancing the efficiency of
the proposed framework will facilitate its use for harvesting other fruits
and vegetables. In other words, by enhancing the performance of each
component of the human-centered approach, an efficient cucumber-
harvesting robot system that can harvest other fruits and vegetables
can be developed. These three improvements will be implemented as
soon as possible, and their versatility will be confirmed through field

experiments involving fruits and vegetables other than cucumbers.
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5. Conclusions

This study was aimed at establishing a human-centered approach
for an efficient cucumber-harvesting robot system. Harvest ordering,
visual servoing, and end-effector-based manipulation were integrated
to achieve efficient and stable harvesting. The proposed approach
involved the determination of the optimal harvest order, guiding of the
end-effector to the cucumber pedicel through visual servoing, and de-
sign of an end-effector that can effectively harvest long cucumbers. The
performance of the harvesting robot was evaluated through preliminary
and field experiments.

The implementation of harvest ordering reduced the harvest time
and TL and increased the battery efficiency. Robust visual servoing
was achieved through fast pedicel detection at a frame rate of 16–23
FPS using computer vision techniques. The pedicel positioning error
was calculated, and the results confirmed that the pedicel could be
positioned within the cutting area of the end-effector. The proposed
end-effector effectively cut a thin cucumber pedicel (3–6 mm) with
a 100% success rate, whereas previous grasping modules failed at
grasping cucumbers.

Field experiments were conducted at three sites: GM, SV, and FF.
The results showed that the success rates ranged from 50.9% to 60.0%
at the three sites, with an overall success rate of 56.6%. The average
damage rate for the harvested cucumbers was 4.7%, with seven dam-
aged cucumbers. The precision, recall, accuracy, and F1-score for GM
were 0.951, 0.916, 0.875, and 0.933, respectively. The corresponding
values for SV were 0.814, 0.777, 0.660, and 0.795, and those for FF
were 0.957, 0.927, 0.890, and 0.942. The average harvesting time was
13.2 s and 30.7 s for the first and second approaches, respectively, with
an average harvest time of 56.0 s. The positional accuracy of the system
was determined to be within the optimal range of 0–30 mm.

Furthermore, failure cases were thoroughly investigated to iden-
tify and address the leading causes of cucumber harvesting failures.
Through targeted research in the identified directions, the harvesting
robot performance can be enhanced, and these efforts are anticipated
to promote the development of more efficient harvesting robot systems.
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