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ABSTRACT This article systematically reviews the literature on major components (application, platform,
and control mechanism) of dual-arm robots in agriculture. To achieve an insightful and transparent review,
four research perspectives (RPs) were defined from the perspective of the dual-arm component: tasks,
platforms, controls, and future directions. Following the RPs, the structure and flow of this review are derived.
By highlighting the RPs, this review article aims to identify the current research state and gaps in dual-arm
agricultural robots. In this phase, the characteristics and challenges of agricultural tasks, meaningful platform
design in terms of mobility, adaptability, and performance, cutting-edge sensing technologies, and advanced
control strategies are also indexed. Based on these, promising future directions have been suggested for
advances such as tactile guidance and scene understanding. This study will help related researchers gain
scalable and improvable insights into dual-arm agricultural robots in dealing with practical challenges. The
insights generated from this analysis could be utilized in the agricultural automation industry, helping to

respond promptly to the growing needs of sustainable and innovative agriculture.

INDEX TERMS
understanding.

I. INTRODUCTION

Over the past decades, advances in the automation of tasks
with simple complexity have been significant. Human-like
robots have recently gained attention for tasks with higher
complexity [1]. Traditional robotic approaches often require
extensive workspace redesigns. However, human-like robots
can operate within unmodified environments and interact
seamlessly. These humanoid robots are expected to mimic
human behaviors and manipulate objects.

However, these applications present new challenges, par-
ticularly in control and perception, which are less prominent
in systems with a single manipulator [2]. Furthermore,
the unique characteristics of such tasks necessitate more
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sophisticated system integration [3], high-level planning and
reasoning capabilities [4], and advanced control methodolo-
gies [5]. For instance, dual-arm teleoperation, which closely
resembles human operations, has been effectively employed
in extreme environments (e.g., space exploration, and the han-
dling of hazardous materials) [6], [7]. In addition to teleoper-
ation [8], human-like robots are increasingly being deployed
in diverse fields, including domestic applications [9], [10],
manufacturing [11], logistics [12], and agriculture [13].

As shown in Fig. 1, dual-arm robots are particularly
effective at tasks requiring coordination between the two
arms. Among these applications, agricultural scenarios pose
some of the most significant challenges due to factors such
as target occlusion and difficulty in accessing objects in
unstructured, dense environments with varying degrees of
stiffness [14]. The limitations of single-arm studies make
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FIGURE 1. Concept of a dual-arm agricultural robot that can perform tasks similar to human actions.

them often ineffective under dynamic conditions. For exam-
ple, [15] reported that the fruit growth direction and target
occlusion constrain the effectiveness of single-arm robots
for harvesting tasks. To address these challenges, researchers
have focused on enhancing the motion planning of single-
arm systems [16] and developing methods to reconstruct or
predict occluded portions of fruits [17], [18]. However, fully
integrated robotic systems ready for real-world deployment
are rare. The robotics community categorizes these uniquely
demanding tasks as coordinated and bimanual, emphasizing
the suitability of dual-arm robots for such scenarios [2].

Table 1 presents the hierarchy of dual-arm manipulation
proposed by [19]. Within this hierarchy, tasks in agricultural
environments are categorized into coordinated and bimanual
categories.

o Goal-coordinated: Each manipulator of the dual-arm
robot performs independent and identical task
sequences, including simultaneous harvesting [20], [21].

o Bimanual: When fruits are difficult to access, one
arm can control tree branches while the other arm
performs harvesting, mimicking human actions [22].
Similarly, one arm can clear obstructing leaves from
occluded fruits to expose the pedicel, thereby improving
perception and enabling precise cutting [23].

Despite these advances, research into dual-arm agricultural
robots remains at an early stage of development [24], [25].
Because of several environmental factors and task-specific
challenges that increase the complexity of perception,
control, and decision-making [26], [27], agricultural robots
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must have adaptability and robustness. These challenges
highlight the need for practical development to effectively
deploy dual-arm robots in real-world agricultural settings.

Figs. 2 and 3 depict the keyword co-occurrence networks
for “agricultural robot” and ‘“‘dual-arm agricultural robot,”
respectively. These networks reveal the frequency and rela-
tionships of keywords. Here, the size of the circle indicates
the frequency, and the relationship between keywords is
represented by a link. The agricultural robot network has a
high density of keywords and reflects a wide range of studies
focusing on practical challenges such as obstacle detection
and uncertainty. By contrast, the network density of dual-arm
agricultural robots is relatively low, and fewer terms are
discussed. This identifiable difference indicates that research
on dual-arm robots is still in its early stages, and in-depth
exploration is limited.

This lack leads to a need for an investigation of existing
systems, the current state, challenges, and future perspectives.
Further, to advance the field, the examination of task-specific
requirements, hardware design, control systems, and practical
applications is also required. This paper reviews the state-
of-the-art dual-arm platforms, their applications, control
mechanisms, and future research priorities.

A. REVIEW PROTOCOL

Before conducting the systematic review, a review protocol
was established following [28]. The review began by defining
the research perspectives. ScienceDirect, Scopus, Web of
Science, Springer Link, Wiley, and Google Scholar were
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employed as databases. Relevant studies were identified
and filtered using predefined exclusion criteria. The review
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process was divided into three key stages: planning the
review, conducting the review, and reporting the findings.
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TABLE 1. Hierarchy of dual arm manipulation [19].

Dual-arm manipulation

Un-coordinated

Coordinated

Goal-coordinated

Bimanual

Example:
The left arm is palletizing parts while the right
arm is welding an unrelated seam.

Example:
Both arms are palletizing parts
into the same box.

Example:
Both arms are lifting and moving
the same box full of parts.

In the planning phase, research perspectives were defined
as per the scope of this article. In this phase, we defined
publication type, search strings, and selection criteria. The
second phase focused on executing the review process.
Publications were identified through systematic searches
of selected databases. Author details, publication year,
publication type, and information aligned with the research
perspectives (e.g., title, keyword, abstract) were extracted
as publication data. After this, the data were synthesized to
provide a comprehensive overview of the existing literature.
The final phase was documenting the main findings to
conclude the review. Reporting the results and addressing
the research perspectives established in the first phase were
included in this phase.

B. RESEARCH PERSPECTIVES
This article aims to provide insights into agricultural tasks,
dual-arm platforms, and control mechanisms. The studies
have been analyzed across the following four research
perspectives (RPs):
1) RP1: What tasks have been addressed in the literature
for dual-arm platform operations?
2) RP2: Which dual-arm platforms have been used in the
agricultural tasks literature?
3) RP3: How have dual-arm platforms been controlled for
agricultural task execution?
4) RP4: What challenges still remain in agricultural tasks
that use dual-arm platforms?

Il. AGRICULTURAL TASKS

To obtain meaningful insights, defining the range of the
application field is necessary. Characterizing agricultural
tasks is considered important, and understanding these tasks
helps address current challenges.

This section provides a detailed review of the specific
agricultural tasks performed by dual-arm robots. Following
the strategy outlined in Table 1, the key characteristics of
agricultural tasks and execution methods are identified. Com-
pared to the single-arm robot, the challenges in integrating
recent technologies into dual-arm robotic systems are also
examined.

A. PRUNING

Pruning involves trimming plants by removing overgrown
branches to maintain their structure, enhance yield and
growth, and reduce the risk of diseases [29], [30]. A manip-
ulator designed for pruning must possess sufficient degrees
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of freedom (DoF) to reach branches with appropriate
positioning and orientation, identify which branches or fruits
to remove, and employ an end-effector capable of performing
precise cuts [31]. Fig. 4 illustrates common methods of
robotic pruning. Fig. 4(a) shows a method primarily aimed
at adjusting the morphology of plants [32], while Fig. 4(b)
illustrates a method aimed at increasing tree growth and
reducing disease risk by managing branch density [33]. In the
branch density adjustment process, leaves and stems are
considered target objects for cutting. The distinct difference
between these two methods is the decision-making process
for branch removal. The density-adjustment method must
perceive most branches and determine the cutting points.
By contrast, the morphology-adjustment method considers
fewer factors when deciding. However, regarding pruning
objectives, branch density adjustment should be prioritized
over morphology adjustment [34].

However, adjusting branch density presents two main
challenges: perception and control. Both challenges stem
from overlapping branches and irregular growth patterns.
Perception is often hindered by overlapping branches, which
impede the identification of the appropriate pruning point.
Similarly, control challenges arise due to irregular growth
patterns, which can lead to kinematic singularities or infea-
sible motion planning. These challenges can be effectively
addressed through bimanual operations (e.g., grasping and
cutting). The representative study of this section, depending
on the type of base platform, is provided in Fig. 5.

Reference [13] proposed a pruning platform capable of
responding to occluded branches. To address the motion
constraints of dual arms, this system uses a recursive
Gibbs-Appell formulation for dynamic modeling. Further, the
non-holonomic constraints associated with high-tree pruning
applications are effectively handled. In more recent studies,
[35] and [36] proposed dual-arm robots for selective pruning
with a focus on adjusting branch density. Reference [36]
proposed a lightweight dual-arm cooperative manipulator
for leaf sampling that uses an ornithopter robot. Although
leaf sampling was the primary application in this study,
the task shared significant similarities with pruning, as it
involves cutting leaves and branches. This onboard dual-
arm manipulator, weighing 94.1 g, mimics the operations of
human fingers and incorporates two heterogeneous grippers:
a scissors-type gripper and a collection gripper. Based on the
input derived from a stereo camera, the inverse kinematics
of the dual-arm system coordinates the movements of both
grippers to achieve precise positioning. The lightweight
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FIGURE 4. Typical methods of robotic pruning: (a) morphology
adjustment and (b) density adjustment.

design of the dual-arm manipulator allows the robot system to
perch on stems, enabling manipulation tasks to be performed
from this perched position.

Reference [35] developed a dual-arm mobile manipulator
that leverages deep learning and computer vision to optimize
the tea-picking process. A sophisticated vision system was
employed with precise tea bud localization for targeted
picking. Further, a control module for guiding the robot
during the picking phase was integrated.

B. FRUIT THINNING AND HARVESTING

In a dynamic agricultural environment, robotic fruit thinning
and harvesting based on single-arm robots often encounter
challenges such as occlusion [37], motion planning difficul-
ties [38], and reduced operational efficiency [39]. As depicted
in Fig. 1, human workers overcome these challenges using
coordinated two-arm actions. By adopting a similar manual
strategy, robotic systems can also address these challenges
effectively.

Addressing these challenges often requires alternative
approaches. As one approach, when fruits are occluded
by obstacles such as leaves or branches, one robotic
arm can be designated to hold or clear the obstacle,
thereby improving perception (see the bimanual strategy
in Table 1) [23], [40]. In crops that grow in clusters,
obstacles may include other non-target fruits, introducing
additional complexity. These scenarios may require a high-
level decision-making model, such as harvest ordering, for
effective task sequencing (discussed further in Section IV-B).
As another approach, to maximize efficiency, both arms can
be deployed simultaneously for harvesting, using identical
end-effectors to execute goal-coordinated actions (refer to the
goal-coordinated strategy in Table 1) [20]. A summary of this
section is presented in Fig. 6.

Reference [41] proposed a dual-arm harvesting robot for
tomato picking. A mobile platform, dual-arm manipulators,
and a stereo camera comprise the system. The robot was
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FIGURE 5. Different types of pruning robots: (a) UGV type [35] and
(b) UAV type [36].

equipped with two task-specific end-effectors: a cutting
gripper and a vacuum gripper, which enabled grasping and
detachment. Reference [21] proposed a dual-arm-based pear
and apple harvesting robot. In the proposed system, the
harvesting sequence consisted of fruit detection, localization,
information integration, inverse kinematics, and path plan-
ning. This study focused on fruit detection under challenging
outdoor conditions (e.g., occlusion, varying light intensities).
Reference [23] proposed a dual-arm robotic system for
automating grape harvesting in cluttered vineyards. In their
study, one arm detected and cut the grape stem, while the
other arm manipulated the grape to improve stem visibility
for cutting. This system solved occlusion by synchronized
bimanual manipulation. The effectiveness was validated in
laboratory and field experiments.

C. TRANSPORTATION
Transportation remains a labor-intensive task in agricul-
ture. In agriculture, transportation often involves handling
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FIGURE 6. Different types of harvesting robots: (a) [41], (b) [20], (c) [21], (d) [23].

irregularly shaped [42], fragile [43], [44], or densely packed
objects [45], which adds complexity to the task. As shown
in Fig. 7, a major challenge in these tasks arises from
shifts in the center of mass when moving boxes containing
multiple objects, which may potentially compromise stability
and handling precision [46]. Single-arm robotic platforms
frequently employ advanced control strategies, such as
sliding mode control [47] or Zero Moment Point (ZMP)
control [48], to address these issues by maintaining balance
during object handling. However, the restricted payload
capacity and reduced handling versatility are limitations of
single-arm robots often noted in the robotics community.

Dual-arm robotic systems enhance the capability to
manage shifts in the mass moment and distribute loads [50],
[51]. During complex transportation tasks, the bimanual
actions of two manipulators improve stability. In agricultural
applications, these systems must also address the unique
challenge of handling delicate products such as fruits
and vegetables [49], which requires precise force control
mechanisms and the integration of soft grippers to prevent
damage to sensitive surfaces while maintaining a secure
grip [52], [53].
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FIGURE 7. Modeling of dual-arm manipulation for transportation [2]:
(a) bimanual manipulation with two rigid grippers and (b) bimanual
manipulation with two soft grippers.

The restricted payload capacity and reduced handling ver-
satility of single-arm robots are solved by distributing loads
between two arms. Reference [54] developed a dual-arm
logistics platform capable of navigating and operating in
uneven agricultural environments. Complementing this, [55]
presented a whiffletree mechanism designed to maintain
stable load distribution, even when positional inconsistencies
occur. Experimental results demonstrated that two URS

VOLUME 13, 2025
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robotic arms working in tandem were able to reposition a 7 kg
load—surpassing the lifting capacity of a single arm.

Reference [49] introduced a deep imitation learning system
to enable dual-arm robots to handle delicate and deformable
objects, as shown in Fig. 8. In this study, to structure the
robot’s motion and trajectory, a dual-network architecture
comprising global and local networks was applied. The global
network manages high-level motion planning, and the local
network provides fine control during interactions with fragile
objects. The delicate object (e.g., banana-peeling scenario)
was manipulated effectively by coordinating the transitions
between these two networks.

D. OTHERS

Although spraying, seeding, pollination, monitoring, and
sampling are essential agricultural tasks, they typically
do not require intensive dual-arm cooperation because
these tasks are relatively unaffected by challenges such
as occlusion, motion planning, and singularity. However,
efficiency remains a critical concern. Coordinating multiple
robotic arms to perform the same task simultaneously is
an effective approach to improving robotic throughput. This
section reviews several case studies to stimulate discussion
on simultaneous dual-arm task execution.

Reference [56] developed a pesticide sprayer robot,
SprayRo, to address multiple farming processes. The authors
developed a dual-arm agricultural platform by incorporating
the platform controller, nutrient sprayer, and sensor system
equipped with two nozzles. To enhance user accessibility, the
authors also developed a dedicated application for the dual-
arm platform.

Reference [57] proposed a mobile dual PR arm agricultural
robot comprising four main subsystems: a digging module,
a seed planting module, a watering module, and an inline
motion module. The dual PR robotic manipulator performed
the digging and soil-covering tasks entirely, operating based
on kinematic synthesis using Denavit-Hartenberg modeling.

Reference [58] introduced Stickbug, a six-armed polli-
nation robot. Stickbug employed a kiwi drive mechanism
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for manoeuvring, six manipulators for parallel execution,
a detection model and classifier, and a felt-tip end-effector
for contact-based pollination.

Ill. AGRICULTURAL PLATFORMS

This section presents an overview of the base platforms used
in agricultural tasks, including Unpiloted Ground Vehicles
(UGVs), Unpiloted Aerial Vehicles (UAVs), and dual-arm
manipulators. Various gripper designs and their associated
sensors, which are essential for effective operation across
these platform categories, are analyzed. Furthermore, the
features, advantages, and limitations of the dual-arm platform
component regarding mobility, payload, and adaptability are
examined, as well as the importance of aligning the platform
with the specific requirements of agricultural applications.
A summary of the key insights and comparisons is provided
in Tables 2-3.

A. BASE PLATFORM

The base platforms are mobility-focused systems that support
task efficiency, stability, and task-specific requirements.
In agricultural environments, the most commonly used UGV
and UAV base platforms are selected.

UGVs are robots designed for planar motion and are
characterized by extended operational time, high payload
capacity, and stability, making them suitable for most
industrial applications. As shown in Fig. 9, UGVs are
typically classified into tracked and wheeled types based on
their driving structure, and the selection is determined by the
operational environment and driving conditions [35], [60].
Although most previous studies have focused on wheeled
UGVs, [59] proposed a monocular vision-based dual-arm
robot for fruit harvesting that employs a tracked UGV system.
Unlike previous wheeled designs, the tracked base in [59] was
selected precisely because it can negotiate loose soil while
carrying the dual arms and an additional harvest bin, a load
level that wheeled harvesters in similar studies [35], [60]
could not stably support. This highlights a classic mobility-
versus-payload trade-off between the two chassis types.
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FIGURE 10. Dual-arm aerial manipulator for harvesting avocado [61].

Although research on tracked platforms is limited, they
were selected for their superior mobility and payload
capacity in open-field agricultural environments compared
to wheeled platforms. Previous studies have focused on
wheeled platforms because they are adaptable to various
soil conditions. Although issues such as slippage and soil
compaction during field operations are critical in agricultural
applications, these mechanical aspects are beyond the scope
of this paper.

Compared to UGVs, UAVs provide enhanced mobility,
offer broader operational ranges, and increase flexibility
through three-dimensional motion. However, short opera-
tional times, low payload capacity, and limited stability
restrict practical use. For instance, [36] and [62] proposed
UAV systems equipped with dual-arm manipulators for
leaf sampling. They developed and attached a lightweight
manipulator weighing 94.1 g to an ornithopter UAV platform
with a payload capacity of 500 g. Likewise, Fig.10 shows
the UAV-based avocado harvester of [61], which operates
a 5.36kg manipulator at the edge of the vehicle’s capacity.
Collectively, these studies confirm that UAVs reach canopies
inaccessible to ground robots, yet their arm-to-airframe mass
ratio remains an order of magnitude below that of UGVs,
revealing an energy-density bottleneck that must be overcome
for heavier tasks.
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UGVs, particularly wheeled configurations, dominate
tasks that require long duty cycles and heavy tool-
ing, whereas UAVs excel at canopy-level access but
remain limited by payload (< 6 kg) and flight time
(< 15 min). Platform choice therefore depends on whether
vertical reach or endurance is the primary mission driver
(Table 2).

B. DUAL-ARM ROBOTS

Owing to the hierarchical structure of the manipulator com-
posed of links and joints, the robot can execute both linear and
nonlinear trajectories. The types and combinations of links
and joints determine the manipulator’s DoF and configura-
tion, and these configurations define the number of indepen-
dent motion directions that a robot can control. In dense and
unstructured environments, robots with high DoF can achieve
complex motion and trajectory planning. However, kinematic
inefficiencies and unnecessary link movements must be
considered as the structure becomes more complicated.
These challenges can be compounded in dual-arm robot sys-
tems, where additional complications, such as self-collision
(discussed further in Section IV-A), can occur. Therefore,
selecting an appropriate DoF and structure based on the task
requirements is necessary for efficient and effective robot
design.

Anthropomorphic manipulators, which resemble the
human arm, remain the dominant choice because their
6—7 DoF chains can weave around foliage and irregular
trellises [22], [27]. This agility makes them the first option
for cluttered orchard scenarios (Tables 2-3), but it also results
in more complex inverse kinematics and a higher risk of
self-collision.

Cartesian systems offer the opposite trade-off. By replac-
ing rotary chains with orthogonal linear slides, the designs in
[20], [31], [67], and [71] reduced planning time and virtually
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eliminated self-collision, albeit at the cost of a larger footprint
and motion limited to box-shaped workspaces. These studies
show that when the crop rows are straight and the canopy
height is uniform, simplicity can outweigh dexterity.
SCARA-style arms sit between the two extremes. The
height-controlled indoor robots in [41], [54], and [72]
achieved high-speed, repetitive picking on flat benches
because their planar kinematics provide stiffness and accu-
racy. The drawback is that they require carefully leveled and
regulated environments and cannot reach around obstacles.
Anthropomorphic arms maximize reach in unstructured
orchards, Cartesian gantries favour straight-row tasks that
tolerate larger hardware, and SCARA units excel on flat,
indoor lines. Configuration choice should therefore follow
task geometry rather than a one-size-fits-all rule (Fig. 11).

C. GRIPPERS

Grippers are a fundamental component of agricultural robots,
and their design requires meticulous attention to detail and
strict precision. The specifications of grippers, including
size, force, torque, and stiffness, must be tailored to the
specific requirements of each task. These considerations are
critical for both single-arm and dual-arm agricultural robots.
In dual-arm robots, using two grippers raises an additional
question: should the pair be heterogeneous or homogeneous?
As shown in Figs. 12 and 13, the answer usually follows
the control strategy. In a bimanual control strategy, where
the two arms perform different subtasks toward a common
goal, heterogeneous end-effectors are typical. In a goal-
coordinated strategy, where both arms perform the same task
in parallel, homogeneous grippers are preferred. Across the
33 papers surveyed, only 10 adopted heterogeneous designs,
indicating that role-divided tooling is still an open design
space (Tables 2-3).

1) HETEROGENEOUS GRIPPERS FOR BIMANUAL CONTROL
The bimanual control strategy executes physically unrelated
tasks simultaneously to achieve common objectives. Refer-
ence [57] developed a mobile dual prismatic-revolute arm
agricultural robot to perform heterogeneous tasks, with one
arm dedicated to soil digging and the other to soil-covering
tasks. In [23], two functionally different grippers were used
in dual-arm grape harvesting systems: grasping and cutting.
References [41] and [72] proposed a bimanual control
concept for tomato harvesting that integrated heterogeneous
end-effectors. This system features two types of end-
effectors: a cutting device for fruit separation and a vacuum
cup for gripping the target tomato. These examples show a
clear pattern: when the workflow requires role differentiation
(e.g., hold + cut), heterogeneous grippers reduce cycle
time by eliminating tool changes but at the cost of added
mechanical complexity.

2) HOMOGENEOUS GRIPPERS FOR GOAL-COORDINATED
CONTROL

The goal-coordinated strategy deploys identical grippers so
that both arms can work in separate zones concurrently.
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[56] demonstrated a low-cost dual-arm sprayer, while [69]
equipped each arm with three-finger grippers for eggplant
harvesting. In [21], fruit is gripped below the stem and
detached by rotation, removing the need for a dedicated
cutter. Reference [59] designed a curved cut-clip finger
specifically for grape stems, and [67] introduced a soft sil-
icone vacuum gripper for gentle detachment. Homogeneous
designs simplify maintenance and control but may limit
flexibility when tasks demand asymmetric forces or distinct
tool geometries.

Heterogeneous end-effectors shine when tasks require
complementary roles (hold + cut, dig 4 cover soil), whereas
homogeneous pairs excel in high-throughput, symmetric
operations. Selecting between them thus hinges on whether
task role diversity or parallel throughput is the primary
performance driver.

D. SENSORS

Sensors underlie perception, planning, and feedback, but
in a dual-arm setting their chief value is in synchronizing
two independent manipulators. This section reviews the
literature on sensor applications in dual-arm agricultural
robots. Further, the following paragraphs explain how each
sensor type can more directly improve coordinated bimanual
manipulation.

LiDAR sensors are often used to improve operational
mobility, such as terrain analysis [59], 3D mapping [68],
and the acquisition of detailed spatial data [64], [70].
These sensors are sometimes used in advanced sensing
applications. In particular, spraying pattern analysis systems
using high-resolution LiDAR sensors have been developed
to minimize spray drift [73], [74]. Likewise, LiDAR
enables accurate crop condition assessment and resource
allocation optimization in precision agriculture by leveraging
high-resolution and high-precision spatial data capabilities.

Stereo RGB-D, multispectral, or infrared cameras are
typically mounted on the wrist or arranged around the
chassis to provide eye-in-hand or multi-view feedback.
Reference [41] integrated a binocular stereo pair with a
dual-arm tomato harvester so that one arm could hold
foliage aside while the other located and cut the fruit,
achieving 96% detection accuracy and an 87.5% harvest
success rate. Reference [21] placed four Intel RealSense
D435 RGB-D cameras at different heights on a dual-arm
apple—pear robot. The upper arm harvested fruit above
shoulder level while the lower arm handled lower branches,
with the multi-camera layout minimizing blind spots behind
leaves.

Several recent studies fuse LiDAR structure with camera
semantics; [75] reported that combining the two modalities
improves object delineation in cluttered scenes, a benefit
that is particularly useful when both arms must reach into
occluded canopy regions.

Infrared (IR) proximity sensors supply millimetre-scale
range data during the final centimetres of approach, allowing
the two wrists to decelerate together and avoid bruising the
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FIGURE 11. Various harvesting robots: anthropomorphic: (a) [27], (b) [22]; Cartesian: (c) [71], (d) [31]; SCARA: (e) [41] and (f) [72].

fruit. Inertial-measurement units (IMUSs) on each arm record
acceleration and angular velocity, filtering out base vibration
and keeping the manipulators dynamically aligned as they
work in parallel [71]. Finally, tactile arrays on the gripper
surfaces measure normal force and detect the onset of slip; if
one side loosens, the controller can immediately redistribute
the load to its partner (see Section IV-C). In short, IR refines
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distance, IMUs stabilize motion, and tactile sensing closes the
force loop, enabling gentle bimanual contact that pure vision
or LiDAR alone cannot guarantee.

LiDAR provides both arms with a shared geometric map,
cameras supply the semantic cues needed for fruit or branch
recognition, and tactile or IR feedback closes the force loop.
Used together, these sensors allow a dual-arm robot to carry
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FIGURE 12. Heterogeneous end-effectors: using the bimanual control
strategy [69].

FIGURE 13. Homogeneous end-effectors: using the goal-coordinated
control strategy [23].
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FIGURE 14. Determination of the dynamic step in the
EDDS-bi-rapidly-exploring random trees algorithm [65].

out tightly coordinated agricultural tasks such as grape-
cluster harvesting, selective branch pruning, and two-arm
bin loading—applications that go beyond the reach of a
single-arm pick-and-place system.

IV. CONTROLS

A. MOTION PLANNING

Motion planning generates collision-free trajectories that
guide both arms to a goal while avoiding obstacles and,
crucially, self-collision between links, which becomes a
greater risk when two manipulators share a confined canopy.
Recent dual-arm studies address this challenge in three
complementary ways.

First, workspace-partition methods shrink the search space.
Reference [69] divided the reachable volume into sub-zones
and added approach-direction constraints; the narrower zones
reduced the number of inverse-kinematic branches that had
to be tested. Reference [63] applied a brainstorm optimizer
based on a multi—traveling-salesman formulation to assign
zones to each arm and defined bounding regions whose
distance thresholds guaranteed that the arms could not
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collide, while also reducing the number of inverse-kinematic
branches that had to be explored.

Second, constraint-hierarchy planners keep all zones
active but resolve priorities at each control step. Refer-
ence [40] stacked joint limits, self-collision margins, and
moving-obstacle constraints in a quadratic-program cascade;
the robot always found a feasible motion, though at a higher
computation cost than the partition approach.

Third, adaptive-sampling planners improve exploration
efficiency. As shown in Fig.14, [65] proposed the EDDS bi-
RRT sampler, which rotates the tree-growth direction when
a node encounters an obstacle and halves the step size if the
search stagnates. Integrated into a 17-DoF humanoid, EDDS
produced paths with roughly one-third fewer nodes than
classic bi-RRT. The same group’s division—merge inverse
kinematics [66] solved each arm’s sub-chain analytically and
then merged the poses, eliminating iterative solvers from the
inner loop (Fig.15).

Partition strategies excel when crop rows allow clear zone
division; constraint hierarchies guarantee feasibility in clutter
but increase computation time; adaptive sampling remains
robust in unstructured orchards yet still depends on fast
collision checking. Combining these approaches, for example
by seeding EDDS with partition-based waypoints, is a
promising step toward millisecond-level dual-arm replanning
in the field.

B. HARVEST ORDERING

Low-level optimizations (e.g., operational speed) improve
individual sub-task steps (e.g., approach, pick, and place), but
the sequence in which two arms harvest multiple fruits often
dominates overall cycle time. Recent dual-arm work frames
harvest ordering as either a time-logic coordination problem
or a task-sequence assignment problem.

As shown in Fig. 16, [20] modeled two practical con-
straints, laser scanner interference and overlapping suction
lines, and encoded them as temporal rules. Alternating scan
cycles removed sensor conflict, while a central vacuum
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FIGURE 16. Schematic of the proposed multi-arm robot structure and workspace:(a) Illustration of shared strokes: the upper and lower arms access a
common area formed by zones OL, OC, and OR through shared guides 1&4 and 2&3. Similarly, guides 1&2 and 3&4 provide access to a shared region
comprising zones OU, OC, and OD for units 1 and 2, as well as 3 and 4, (b) Workspace zones: E1-E4 (exclusive areas) and OU, OL, OD, OR, OC (common

areas). [20].
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FIGURE 17. Fire extinguishing mechanism for harvest order: the red zone represents a fire area inaccessible without a fire extinguisher, and the green
zone indicates the location of the extinguisher. A person, represented by a yellow triangle, begins at position “1,” retrieves the extinguisher from “2,” and

proceeds to position “3” to extinguish the fire [67].

prevented the arms from working in the same zone simultane-
ously. Experiments showed a meaningful idle-time reduction
compared with naive simultaneous planning.

Reference [67] partitioned the workspace into fire-
extinguisher—style regions and used a Markov decision-
process reinforcement learning approach to assign the five
motion phases (approach, extension, grasp, retraction, place-
ment) to whichever arm could execute them without conflict
(Fig. 17). Grouping phases that could run in parallel yielded
a shorter completion time than nearest-fruit heuristics.

Time-logic rules are simple to implement but rely on
hand-tuned constraints; sequence-learning methods adapt
automatically yet require training data and add computation.
A hybrid scheme that uses learning-based ordering seeded
with time-logic rules could combine robustness with adapt-
ability and is a promising direction for field trials.

C. TACTILE FEEDBACK CONTROL

Tactile sensors provide contact, friction, and pressure data
that vision alone cannot, and thus allow two arms to adapt
their forces when manipulating fragile or partly occluded
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produce [76] (Fig. 18). Although several of the papers
cited below use a single manipulator, each technique scales
naturally to coordinated bimanual work. For clarity, they
are grouped into three strands with notes on the dual-arm
implications in every case.

1) CONTACT-TRIGGERED MOTION RECONFIGURATION

Reference [77] placed taxels along a single arm and switched
to an alternate joint trajectory as soon as contact was detected,
letting the arm slide along an obstacle rather than stop.
Reference [78] extended the idea to a redundant mobile base
and showed that the same controller formalism accommo-
dates multiple arms by adding self-collision distances to
the task-priority stack; dual-arm prototypes therefore inherit
millisecond-level reactions with minimal code changes.

2) PREDICTIVE FORCE CONTROL

Classical functional predictive control uses a linear contact
model and replans at fixed intervals; it copes with simple
pushes but underestimates force peaks on irregular fruit
clusters. Reference [79] replaced that model with a neural

VOLUME 13, 2025



Y. Jo et al.: Review on Dual-Arm Manipulation in Agriculture

IEEE Access

network that predicts the next contact wrench from recent
tactile images. Although demonstrated on one arm, the
network runs per gripper and therefore transfers directly
to a two-arm layout, where anticipating partner-induced
disturbances is even more critical.

3) HUMAN-IN-THE-LOOP INTERFACES

When perception is uncertain, operators can inject expertise
through gestures. Reference [80] combined a data glove with
an OptiTrack tracker so that the operator could steer a tomato
harvester in six degrees of freedom, while embedded tactile
sensors streamed real-time contact forces to the controller.
This intuitive tactile loop not only warns the operator of
incipient slip but also enables the system to modulate
grasp force against crop-specific bruise thresholds, providing
a transferable safety layer for future dual-arm platforms.
Because the interface addresses each wrist independently,
it can teleoperate either arm alone or both arms coopera-
tively, making it a straightforward fallback for coordinated
harvesters.

Contact-triggered replanners supply reflex-like reactions,
predictive controllers forecast contact dynamics, and gesture
overrides bring human insight. All three ingredients are
portable to dual-arm robots, yet field deployment still
hinges on tactile skins that survive dust, moisture, and
temperature swings. Engineering outdoor-rated skins and
fusing data-driven force prediction with human gestures are
the most immediate steps toward reliable bimanual operation.

D. DUAL-ARM COORDINATION

Early coordinated control drew on the hybrid position—force
framework. Reference [81] extended the single-arm formu-
lation of [82] to two manipulators handling one constrained
object, separating object motion from internal forces that
do not affect the object pose. Their task Jacobian and
hand-constraint matrix remain the standard way to specify
grasp constraints in agricultural robots that must hold a
branch while cutting.

Stability and dynamic coupling were analyzed soon
after. Reference [83] introduced the generalized Jacobian to
capture interaction between two arms, and [84] proposed
object-level impedance control that regulates both motion and
internal force. These results underpin recent impedance or
admittance controllers that let one arm absorb fruit motion
while the other completes a cut.

A survey by [2] showed how the above theories migrated
from fixed-base platforms to mobile and humanoid systems.
More recently, [23] demonstrated a grape-harvesting robot in
which one arm stabilized a cluster and the second arm cut the
stem.

Most agricultural prototypes still rely on quasi-static
models and low-frequency force sensing, which limits cycle
time and makes real-time internal-force regulation difficult
in oscillating plants. High-bandwidth six-axis force—torque
sensors and fast inverse-dynamics solvers are needed to move
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(b)

FIGURE 18. Application of tactile feedback control technology in
agriculture: (a) [79] and (b) [80].

beyond “hold and cut” toward tasks such as cooperative
carrying of fruit trays.

Future work should integrate object-level impedance with
vision-based state estimation so that internal force targets
adapt to branch stiffness. Large language model planners
could issue high-level role assignments (“‘left arm stabilize,
right arm cut”) that are then realized by the Yoshikawa
object-space controller. Combining these elements will push
dual-arm robots from laboratory demos to field-ready, fully
coordinated harvesters.

V. CHALLENGES AND FUTURE PERSPECTIVES

This section aims to establish meaningful insights based on
the literature reviewed in the earlier sections. In this section,
we discuss the remaining challenges for the defined RPs and
respective sections, and the resulting future perspectives.

A. RP1 RELATED

The expansion from the agricultural robotics community to
the field is considered important in terms of system design,
verification, and deployment. This paper covers the latest
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FIGURE 19. (a) Proportion chart of validation environment in the recently
published dual-arm study, and (b) number of published dual-arm papers
by year.

research on dual-arm manipulation in agriculture. However,
development and discussion at the current research stage
are limited and sparse. Fig.19(a) shows the proportion chart
of the validation environments of the reviewed documents.
48.4% of the total was verified only in the laboratory or
simulation (16 of 33). This percentage for the studies that
presented identifiable validation environments increased to
51.6% (16 of 31). These levels are expected to decline
as interest in dual-arm agricultural robots increases (see
Fig.19(b)), but this alone is not enough for successful
deployment in the field. Future studies should fully identify
each task characteristic (e.g., task-performing method (Fig.4
and Fig.7), discussed in Section V-C) and constraints (e.g.,
occluded area restoration [37]) to cope with the uncertainty
of the site.

In particular, the high-level perception and decision
framework should be carefully tuned to suit the charac-
teristics of the field and the object and integrated with
the robot system. It is believed that perception frameworks
such as recognizing object clusters [85], recognizing 3D
morphology [86], classifying object characteristics [87],
and alleviating environmental constraints [37] can guarantee
robust performance.
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FIGURE 20. Task-relevant plant part searching framework for automating
harvesting and de-leafing proposed by [88].

B. RP2

Although dual-arm robotic systems inherently possess
structural advantages for coordinated bimanual operations,
a review of the selected literature reveals that these
advantages have not been fully exploited at the gripper
level. Among the 33 reviewed articles, only 10 adopted a
heterogeneous gripper configuration. More notably, out of
the 11 studies explicitly addressing bimanual manipulation,
4 (36%) still employed homogeneous grippers, wherein both
arms were equipped with identical end-effectors.

From these statistics, it is evident that current practices do
not fully align with the functional requirements of bimanual
operation (which entails role differentiation between the
two manipulators). In the current robotic platform, the
widespread use of homogeneous gripper configurations
limits the potential for such role specialization (e.g., human
analogues).

To address this gap, future research should pursue two
complementary directions:

« Functionally distinct gripper design tailored to spe-
cific subtasks—e.g., grasping [89], cutting [90], or push-
ing [79]. Dedicated end-effectors make it possible to
allocate clear roles to each arm.

o Task-role hierarchical planners that automatically
assign those subtasks to the appropriate manipulator
based on its gripper capabilities (see Fig. 20) [88].

C. RP3

Only 11 of the 33 papers we reviewed embedded explicit
bimanual coordination; most still mirrored single-arm rou-
tines, so the two manipulators moved in parallel rather than
in cooperation [20], [67]. Closing that gap requires progress
on four tightly linked fronts.

1) TASK-SEMANTIC ROLE ALLOCATION

Geometry-centric planners decide where an end-effector
should go but seldom encode why it moves. Effective
harvesters must first decide which arm stabilizes a branch,
which arm cuts, and when roles should swap as occlu-
sions or weight distribution change (task methods in [93],
[94]; crop characteristics in [95]). Fig. 21 sketches how
a language-model planner could generate such high-level
assignments. [91]
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FIGURE 21. The large language model-powered cooperative control framework suitable for various robot
capabilities, task characteristics: (a) logistics, (b) inspection, (c) search & rescue. Each case can be
compared to the dual-arm’s goal-coordinated operation (a, b) and bimanual operation (c) [91].
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FIGURE 22. Situation awareness and scene understanding for future dual-arm harvesting robots [92].

2) OBJECT-LEVEL FORCE SHARING

Simply mirroring joint torques ignores asymmetric fruit
mass and branch stiffness; one gripper then slips while
the other carries the load. Extending Yoshikawa’s hybrid
position—force framework to crops remains an open chal-
lenge, because the controller must estimate internal forces in
real time and adapt compliance to living-plant variability.

3) MULTIMODAL FEEDBACK FUSION

Vision localizes fruit, but only tactile skins and wrist
force—torque sensors can feel slip or bruising. Few systems
fuse these streams at the control rate. A pipeline that blends
RGB-D perception with kilohertz tactile data would let each
arm predict incipient slip and modulate grasp forces before
damage occurs.

4) SHARED EVALUATION METRICS

Most studies report isolated success rates, making compari-
son difficult. Benchmarks such as cycle time per fruit cluster
in dense canopy, root-mean-square internal-force error during
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cooperative cuts, and cumulative bruise ratio would allow the
community to quantify gains and focus efforts where they are
most needed.

Moving beyond duplicated single-arm loops will require
controllers that assign semantic roles, balance forces at the
object level, fuse visual and tactile feedback in real time,
and report results against common field-oriented metrics.
Addressing these intertwined challenges is the next step
toward truly cooperative dual-arm field robots.

D. RP4

Dual-arm robots already boost productivity in pruning and
harvesting, yet they still falter when tasks require real-time
replanning in cluttered, changing orchards. Reaching full
autonomy will therefore demand more than bounding-box
detection; the system must understand the scene itself—how
fruits, leaves, and stems depend on one another—and reason
about those relationships before deciding how the two arms
should cooperate [92], [96]. Fig. 22 illustrates this need for
relational awareness.
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Recent work in other fields has shown that images can be
converted into scene graphs—Ilanguage-like structures that
list objects and label the spatial or functional ties between
them [97]. In agriculture, robots must detect objects such
as fruits, leaves, and stems from acquired scenes and infer
their positions (e.g., up, down, left, right, near) and attributes
(e.g., ripeness, rigidity, and color). Additionally, they must
recognize dependent relationships, such as stem-leaf, stem—
fruit, and leaf—fruit, to effectively plan tasks. Despite
the current limitations of agricultural datasets, building
scene-label datasets to pre-train models and fine-tune them
for agricultural applications is necessary [98].

Future studies are expected to incorporate human exper-
tise to improve the coordination of dual-arm robots and
enable autonomous decision-making. Knowing that one leaf
occludes a fruit would allow the planner to assign the left
arm to clear foliage while the right arm cuts, or schedule
actions to minimize branch oscillation and tool interference.
Human know-how can also be folded in through language
grounding: an operator might say “stabilize the branch, then
cut here,” and the robot could translate that instruction into
complementary roles for its two arms.

Vision alone cannot guarantee safe or reliable grasping
once the robot leaves the lab. Tactile skins detect incipient
slip, wrist force—torque sensors report how the load is
shared, and fusing these signals with RGB-D data at control-
loop speed enables the system to react before fruit damage
occurs. Because grasp force can then be clamped just
below crop-specific bruise limits—even as lighting, wind,
or branch motion change—the same controller is far more
likely to remain stable when the platform is deployed
outdoors [99].

In short, the path to fully autonomous dual-arm field
robots lies in agricultural scene-graph datasets, relation-
aware planners that balance forces as well as geometry, and
multimodal feedback loops that close the gap between global
perception and local interaction.

VI. CONCLUSION

This article reviews dual-arm agricultural robotic systems
as a solution to the limitations of single arm designs. The
review shows that dual arm systems offer clear advantages
in handling uncertainty, occlusion, and task complexity
for representative agricultural operations (e.g., pruning,
thinning, harvesting, transportation). In particular, simulta-
neous bimanual manipulation enables dexterous execution in
scenarios that demand delicate handling of fragile produce or
tightly coordinated motion.

A comprehensive review of dual arm platforms is also
provided to inform future development. Base platforms,
manipulators, grippers, and sensors shape mobility, task
specificity, and execution strategies. Advanced sensing
technologies such as computer vision, tactile sensors, and
multimodal feedback are identified as key enablers of
real time, accurate decision making. Beyond hardware,
advanced control mechanisms including motion planning,
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tactile feedback, and multimodal integration are emphasized
as essential for adaptive and precise operation in dynamic
agricultural environments.

In summary, this article provides scalable and extensible
insights into dual arm agricultural robotics from the per-
spectives of application, platform, and control. Addressing
practical challenges including adaptability, robustness, and
cost efficiency highlights constructive directions for future
research.
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