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A B S T R A C T

This study introduces a fast and stable pedicel detection method for robust visual servoing (RVS), supplemented
with video stabilization (ViS) and fast pedicel detection, to realize automated harvesting of shaking fruits. By
incorporating ViS, the system effectively mitigates the effects of motion blur, thereby ensuring consistent and
precise object detection. In addition, the Fourier spectrum-based band-stop filter (FSBF) is used to improve
clarity. The proposed approach also leverages the fast point feature histogram (FPFH) for fast pedicel detection,
achieving real-time detection rates of 15–37 fps. Furthermore, it incorporates 6D pose estimation, culminating
in the implementation of a 6D pose-based robust visual servoing (6DRVS) system. The performance of this
system is evaluated using standard metrics such as perception accuracy, approach accuracy, precision, recall,
accuracy, and F1-score in both preliminary tests and on-site experiments at two cucumber farms in Korea.
The 6DRVS, supplemented with fast pedicel detection and ViS, exhibited improvements across all evaluation
metrics. It recorded 90.00% perception accuracy, 82.22% approach accuracy, 0.957 precision, 0.938 recall,
0.900 accuracy, and 0.947 F1-score, highlighting its essential role in ensuring precise and efficient harvesting.
1. Introduction

Robotic technology has advanced rapidly and has profoundly in-
fluenced numerous sectors, notably agriculture (Xiao et al., 2022).
The challenges posed by declining agricultural labor, an aging work-
force, and unpredictable climate changes have accelerated the transi-
tion to smart agriculture (Kpadonou et al., 2017; Ju et al., 2022). With
drones scanning fields from above (Ju and Son, 2019) and coordinated
ground vehicles optimizing processes (Kim and Son, 2020), precise
smart agriculture promises to provide consistent yields and economic
growth (Kim et al., 2019; Seol et al., 2022; Park et al., 2023a). A
burgeoning domain in this arena is the development of harvesting
robots. These robots help address one of the most labor-intensive tasks
in farming and ensure that crops are harvested at their peak. As
global food demand surges, there is a growing need to improve the
productivity and accuracy of harvesting processes (Mohamed et al.,
2021). To this end, capabilities in terms of identifying crops, precisely
determining their spatial coordinates, and harvesting them without
causing damage are necessary (Campbell et al., 2022).

The unpredictable and unstructured environments that characterize
the agricultural sector present unique challenges from the perspective
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of robot application (Bechar, 2021). Fruits exhibit diverse biological
characteristics depending on their growth environment, spatial posi-
tion, geometric shape, size, color, and hardness (Tang et al., 2020).
These characteristics make it arduous for robots to function effec-
tively (Li et al., 2020). For this reason, while fruit-harvesting robots
have been advanced significantly, the path to the commercialization of
such robots remains elusive (Gil et al., 2023). Multifaceted agricultural
settings, combined with the delicate nature of crops, constitute the core
of this challenge. Consequently, the current study focuses on devising a
suitable approach for robot application by investigating crop detection
and localization.

In harvesting robots, visual servoing (VS), which capitalizes on feed-
back from vision sensors to steer and control robotic systems, is being
used increasingly (Zhao et al., 2016). VS has advanced rapidly in recent
years, and extensive research efforts related to VS have been made
across a broad range of applications, including the harvesting of toma-
toes (Gao et al., 2022b), apples (Gao et al., 2022a), strawberries (Xiong
et al., 2020), and sweet peppers (Arad et al., 2020). However, the
dynamic environments of these crops introduce disruptions such as un-
expected motions, which challenge the efficacy of traditional VS (Mehta
168-1699/© 2024 Published by Elsevier B.V.
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Fig. 1. Cucumber-harvesting robot developed in previous studies (Park et al., 2023b): (a) Structure of cucumber-harvesting robot and (b) visual servoing process.
and Burks, 2016). In view of this challenge, researchers are focusing
on robust visual servoing (RVS), which is designed to offer unwavering
performance even in the presence of such perturbations (Mehta and
Burks, 2014; Mehta et al., 2016). However, environmental factors, such
as uneven lighting, shadows, and partial covering of fruits with stems
and leaves, and shaking fruits, can lead to partial fruit detection, where
only a part of a fruit is identified. To realize the full potential of RVS,
it is crucial to achieve impeccable object detection even under adverse
conditions. This requirement accentuates the importance of embedding
robust detection protocols within VS for realizing more robust and
reliable robotic functionalities.

The integration of deep learning with harvesting robots is a bur-
geoning research frontier (Lawal, 2021). As this field progresses, var-
ious implementations are emerging. For instance, Mao et al. (2023)
introduced a technique that leverages smartphones for detection at a
speed of 19.00 frames per second (fps). Moreover, their MangoYOLO1
model, which drew from the features of the YOLOv3 and YOLOv2
models, achieved a detection speed of 14.30 fps on high-end computing
clusters with a detection time of 70 ms/frame. In another study, Gao
et al. (2022a) developed an automated image processing method tai-
lored for counting apples in orchards with modern vertical fruit-wall
structures. They achieved an accuracy of 99.35% at detection speeds of
2.00 to 5.00 fps. However, for real-time applications, detection speeds
should ideally exceed 20.00 fps. Anything slower, especially when
incorporated into robots, could hamper performance (Zhang et al.,
2021). This challenge is exacerbated by the computational demands of
deep learning algorithms, which often reduces the frame rate.

In addition, a critical objective in this domain is precise detection
of the pedicel, that is, the flower-supporting stem, which is essential
for efficient robotic harvesting. Kim et al. (2022) developed the Deep-
ToMaToS model to estimate the six-dimensional (6D) pose of an object,
and the average accuracy of this model was 96.83%. However, there
was a trade-off: as the inference time increased, the frame rate de-
creased from 45.81 fps to 7.26 fps. To circumvent potential collisions
between harvesting robots, Luo et al. (2022) explored the use of deep
cameras for object detection and 6D pose estimation. Their method-
ology required approximately 1.79 s to detect and estimate the pose
of one grape cluster. These findings suggest that the incorporation of
6D pose estimation for pedicel recognition might inherently increase
computational demands. Therefore, further research on stable and fast
detection is needed.

In previous studies, research on efficient cucumber-harvesting
robotic systems was conducted (Park et al., 2023b). VS was realized
using an easy and fast detection technology based on a simple and
fast approach (Fig. 1). In this context, detection was achieved using
computer vision-based pedicel detection, specifically by leveraging the
differences between normal vectors in the fast point feature histogram
2

(FPFH) to identify pedicels. Even if there exists some error in fruit
detection and extraction of pedicel location, so long as the pedicel is
within the ROI, 6D pose estimation can be performed using FPFH. The
advantage of this proposed fruit detection approach is that it detects
the shape of the fruit rather than its type, and therefore, the approach
can be adapted easily to different fruits without the need for new
datasets, unlike deep learning. A notable hurdle in this endeavor was
the reduced perception accuracy during the approach phase, which was
predominantly attributed to the shake generated as the robots engaged
with plants (Mehta et al., 2014). Such interactions often induce image
or motion blur, which significantly degrades the quality of the cap-
tured visuals. Moreover, because these blurs are caused by fast object
dynamics or camera instabilities, they reduce image sharpness (Huihui
et al., 2023). This reduction, in turn, increases the complexity of object
detection from these images, which makes the task more error-prone.
To address this concern, advanced techniques that can ensure reliable
pedicel detection despite these complexities must be developed.

In this study, a fast and stable pedicel detection mechanism for
the proposed 6D pose-based robust visual servoing (6DRVS) approach
is introduced to efficiently harvest fruits that may be in motion. By
adopting a straightforward computer-vision-based approach for pedicel
detection in combination with video stabilization (ViS), the system
effectively counters the challenges posed by fruit shake, which makes it
suitable for use in real-time applications. The quick computation speeds
offered by the computer-vision-based method make the system ideal
for instantaneous image processing. Meanwhile, the ViS incorporated
into the system minimizes image oscillations substantially. To improve
video clarity, a Fourier spectrum-based band-stop filter (FSBF) that
varies according to the measured blurriness is applied. Additionally,
fast pedicel pose estimation is realized using FPFH-based 6D pose
estimation. The primary goals of this work are to present techniques
that enhance both the perception and approach precision of harvesting
robots.

The contributions and novelty of this study are as follows:

• A computer-vision-based system tailored for swift and reliable
detection of the 6D pose of pedicels in intricate agricultural
settings is presented.

• The proposed system integrates ViS, FSBF, and FPFH to address
issues related to video blurriness and improve the speed of 6D
pose estimation for facilitating stable and fast pedicel detection.

• The efficacy of this system is tested rigorously in real-world
conditions, specifically in two cucumber farms in Korea. The
results underscore the robustness and competency of the system
in actual farming scenarios.

• The problems and supplements encountered in the experiment are
discussed in depth.
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Fig. 2. Flowchart of 6D pose-based robust visual servoing (6DRVS) of fruit.
Fig. 3. 6D-pose-based robust visual servoing (6DRVS).
The remainder of this paper is organized as follows: Section 2
focuses on the estimation of 6D pose by using the 6DRVS. Section 3
describes the preliminary experiments conducted to evaluate the pro-
posed system and analyzes the results. In Section 4, field experiments
conducted in real-world environments are described, along with the
methods used, and the results are analyzed. In Section 5, the associated
problems and supplements are discussed comprehensively. The paper
concludes with a summary of our findings and an outline for future
research.

2. 6D Pose based Robust Visual Servoing (6DRVS)

In this section, the proposed method and approach for combining
multiple technologies to realize efficient and precise harvesting are
elucidated. The 6DRVS approach synergizes ViS, FSBF, and FPFH-based
6D pose estimation to yield optimal results in diverse agricultural
environments. The process flow of the 6DRVS approach is depicted
in Fig. 2, and this approach is designed to facilitate accurate object
detection and pose estimation in real time. The results of executing the
detection task in the 6DRVS approach according to this process flow
are presented in Fig. 3.
3

2.1. Overall system

In a previous study, a cucumber-harvesting robot was developed
(Park et al., 2023b). The hardware configuration of this robot is de-
picted in Fig. 1(a), and it is identical to that of the robot used in
this study. The mobile platform (AgileX Robotics, Scout 2.0, China)
is equipped with a manipulator (Universal Robots, UR5e, Denmark).
An end-effector (EE) is attached to the tool center point of the ma-
nipulator. The custom-made EE is equipped with a hand-eye camera
(local camera), cutting module, and grasping module. Additionally, to
facilitate detection and maintain an adequate ambient lighting, an LED
flash that is always switched on is mounted in EE. The aforementioned
camera is a short-range stereo camera (Intel, D405, U.S.A) that provides
high-resolution, color, and global shutter depth sensors for close-range
computer vision applications. The parameters of the manipulator and
camera of the harvesting robot capable of 6DRVS are summarized in
Table 1.

Camera and hand-eye calibration are performed separately. The
proposed system comprises a hand-eye camera and a UR5e robot.
Camera calibration is performed using an ArUco marker to compute
the camera coordinates. For hand-eye calibration, a calibration marker
is positioned near the robot. Fig. 4 illustrates the relationships between
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Table 1
Parameters of the manipulator and camera constituting the proposed system.
Camera Robot manipulator

Feature Parameter Feature Parameter

Model Intel RealSense D405 Model UR5e
Type Active stereo based RGB-D camera Type Universal robots
Resolution [Pixels] 640 × 480 DoF 6
FOV [deg] 87 (Horizontal) × 58 (Vertical) End-effector Custom
Depth accuracy [mm] ±2% at 500 Load [kg] 5
Ideal range [mm] 70 to 500 Accuracy [N⋅m] 0.3
Fig. 4. Coordinates in the hand-eye system.
various coordinate systems: 𝐴𝑀 denotes the ArUco marker, 𝐸𝐸 de-
notes the EE, 𝐹𝐿 denotes the flange, 𝑅𝑆 denotes the robot’s system,
and 𝐶𝐴 denotes the camera. The coordinate transformation sequence
is ted as follows:

𝑅𝑆
𝐹𝐿𝑇𝑅

(𝑗) ⋅ 𝐹𝐿𝐶𝐴𝑇𝑅 ⋅ 𝐶𝐴𝐴𝑀𝑇𝑅
(𝑗) ⋅ 𝐴𝑀𝑅𝑆 𝑇𝑅 = 𝐼. (1)

Here, 𝐼 is the identity matrix. The hand-eye relationship is expressed
as follows:

𝐹𝐿
𝐶𝐴𝑇𝑅 =

(𝐶𝐴
𝐴𝑀𝑇𝑅

(𝑗)𝐴𝑀
𝑅𝑆 𝑇𝑅

𝑅𝑆
𝐹𝐿𝑇𝑅

(𝑗))−1 . (2)

𝐴𝑀
𝑅𝑆 𝑇𝑅 is a static transformation matrix from 𝑅𝑆 to 𝐴𝑀 , and it is
calibrated by aligning the origin of E with the axes of 𝐴𝑀 . 𝐶𝐴𝐴𝑀𝑇𝑅

(𝑗)

is the transformation from 𝐴𝑀 to 𝐶𝐴 for the position of the 𝑗th robot,
and it is determined using regression methods. 𝑅𝑆𝐹𝐿𝑇𝑅

(𝑗) represents the
transformation from 𝐹𝐿 to 𝑅𝑆 at the 𝑗th position, and it is obtained
from forward kinematics. To ensure robustness, data from multiple
positions are averaged:

𝐹𝐿
𝐶𝐴𝑇𝑅 = 1

𝑁𝐾

𝑁𝐾
∑

𝑖=1

(𝐶𝐴
𝐴𝑀𝑇𝑅

(𝑖) ⋅ 𝐴𝑀𝑅𝑆 𝑇𝑅 ⋅ 𝑅𝑆𝐹𝐿𝑇𝑅
(𝑖))−1 . (3)

𝑁𝐾 represents the count of different poses, and it is set to 10 in
this study. The end effector’s position, denoted as EE, is determined
by the transformation from the flange to the robot’s system at the
𝑗th position, represented as 𝑅𝑆

𝐹𝐿𝑇𝑅
(𝑗). This transformation is obtained

from the robot’s forward kinematics. However, to calculate the exact
position of the end effector’s cutting area, which is offset from the
camera coordinates by 50 mm along the 𝑦-axis and 160 mm along the
𝑧-axis, additional conversion must be applied. This transformation can
4

be represented as:

𝐶𝐴
𝐸𝐸𝑇𝑅 =

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 50
0 0 1 160
0 0 0 1

⎥

⎥

⎥

⎥

⎥

⎦

. (4)

Then, the position of the EE in the robot’s system can be calculated by:

𝑅𝑆
𝐸𝐸𝑇𝑅

(𝑗) = 𝑅𝑆
𝐹𝐿𝑇𝑅

(𝑗) ⋅ 𝐹𝐿𝐶𝐴𝑇𝑅 ⋅ 𝐶𝐴𝐸𝐸𝑇𝑅. (5)

This allows us to compute the exact position of the EE cutting area in
the robot’s coordinate system. 𝑅𝑆𝐸𝐸𝑇𝑅

(𝑗), The EE cutting region coordi-
nate 𝐹𝑐 can be obtained as depicted in Fig. 1(b).

2.2. Video stabilization

In video stabilization, the primary goal is to mitigate the effects
of camera shake and enhance video quality. This process encompasses
three sequential steps: corner point extraction, optical flow computa-
tion, and motion smoothing via Kalman filtering.

2.2.1. Corner point extraction
Corner point extraction is the first process in video stabilization. Shi-

Tomasi corner detection, which builds on the Harris corner detection
method (Mstafa et al., 2020), identifies those points in video frames
𝑉 that can be tracked reliably across successive frames. It focuses on
the smallest eigenvalue of the second-moment matrix, which represents
changes in the image gradient. The second-moment matrix 𝑀 of a pixel
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is defined as follows:

𝑀 =
∑

𝑖
𝑤𝑖

[

𝑉 2
𝑥𝑖

𝑉𝑥𝑖𝑉𝑦𝑖
𝑉𝑥𝑖𝑉𝑦𝑖 𝑉 2

𝑦𝑖

]

, (6)

here 𝑉𝑥𝑖 and 𝑉𝑦𝑖 denote the image gradients at the 𝑖th pixel, and 𝑤𝑖
s the window function. This approach ensures that the points chosen
or tracking are robust across successive frames, creating a foundation
or accurate motion estimation.

By using the Shi-Tomasi method, 𝑛 corner points 𝐏 = {𝑝1, 𝑝2,… , 𝑝𝑛}
are detected from a given video frame. Additionally, a user-defined
point 𝑝user is added to obtain the augmented set of points 𝐏′ =
𝐏 ∪ {𝑝user}. The set 𝐏′, containing a total of 100 points, is used in
ubsequent processes such as motion estimation using optical flow.

.2.2. Optical flow
Following corner detection, optical flow computation is conducted

sing the Lucas-Kanade method to estimate motion between consecu-
ive frames. For each detected corner point 𝐩𝑐 in the set 𝐏′, at location
(𝑥, 𝑦) in the frame at time 𝑡, the Lucas-Kanade method is used to
alculate the flow vector (𝑢𝑖, 𝑣𝑖):

[

𝑉𝑥(𝐩𝐜) 𝑉𝑦(𝐩𝑐 )
]

[

𝑢𝑖
𝑣𝑖

]

= −𝑉𝑡(𝐩𝑐 ), (7)

where 𝑉𝑥(𝐩𝑐 ), 𝑉𝑦(𝐩𝑐 ), and 𝑉𝑡(𝐩𝑐 ) represent the spatial and temporal
intensity gradients at 𝐩𝑐 . The optical flow vectors 𝐯𝑖 = [𝑢𝑖, 𝑣𝑖]𝑇 of each
point 𝐩𝑐 are then utilized in the Kalman filter for motion estimation.

2.2.3. Kalman filter for motion estimation
The Kalman filter plays a pivotal role in video stabilization by

estimating and correcting camera motion to enhance video clarity. It
operates in two main phases: prediction and update. Initially, the state
vector 𝐱𝑘, representing the camera’s position and velocity, is predicted
from the previous state 𝐱̂𝑘−1|𝑘−1 and external control inputs 𝑢𝑘 through:

𝐱̂𝑘|𝑘−1 = 𝐀𝐱̂𝑘−1|𝑘−1 + 𝐁𝑢𝑘, (8)

where 𝐀 is the state transition matrix, and 𝐁 is the control input model.
Updates leverage new observations 𝐳𝑘:

𝐱̂𝑘 = 𝐱̂𝑘|𝑘−1 +𝐊𝑘(𝐳𝑘 −𝐇𝐱̂𝑘|𝑘−1), (9)

where 𝐊𝑘 is the Kalman gain, informed by process noise covariance 𝐐
and measurement noise covariance 𝐑:

𝐊𝑘 = 𝐏𝑘|𝑘−1𝐇𝑇 (𝐇𝐏𝑘|𝑘−1𝐇𝑇 + 𝐑)−1. (10)

Dynamic adjustments are facilitated through:

𝐏𝑘|𝑘−1 = 𝐀𝐏𝑘−1|𝑘−1𝐀𝑇 +𝐐, (11)

enhancing the filter’s robustness. These configurations-specifically the
calibration of 𝐐 and 𝐑 are critical, determined through trial and error,
to stabilize the video effectively. This methodical approach enhances
video stabilization by compensating for camera motion, improving
stabilization accuracy and reliability. Optical flow vectors 𝐯𝑖 from all
points in 𝐏′ form the measurement vector 𝐳𝑘, computed as 𝐳𝑘 =

∑

𝑖∈𝐏′ 𝐯𝑖,
crucial for the Kalman filter’s update phase.

The final stage involves using the motion estimates from the Kalman
filter to generate a stabilized video 𝑉𝑠. This is achieved by constructing
the transformation matrix 𝐓𝑘 from the estimated state vector 𝐱̂𝑘:

𝐓𝑘 =
⎡

⎢

⎢

⎢

⎣

cos(𝜃𝑘(𝐱̂𝑘)) − sin(𝜃𝑘(𝐱̂𝑘)) 𝛥𝑥𝑘(𝐱̂𝑘)
sin(𝜃𝑘(𝐱̂𝑘)) cos(𝜃𝑘(𝐱̂𝑘)) 𝛥𝑦𝑘(𝐱̂𝑘)

0 0 1

⎤

⎥

⎥

⎥

⎦

, (12)

where 𝜃𝑘(𝐱̂𝑘), 𝛥𝑥𝑘(𝐱̂𝑘), and 𝛥𝑦𝑘(𝐱̂𝑘) represent the rotation angle and
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translations in the 𝑥 and 𝑦 directions, respectively, and they are derived
from the state vector 𝐱̂𝑘 for the frame at time 𝑘. By applying this matrix
𝐓𝑘 to each frame, stabilization is achieved as follows:

𝑉𝑠(𝑥, 𝑦, 𝑘) = 𝐓𝑘 ⋅ 𝑉 (𝑥, 𝑦, 𝑘), (13)

where 𝑉𝑠(𝑥, 𝑦, 𝑘) is the stabilized frame at time 𝑘, and 𝑉 (𝑥, 𝑦, 𝑘) is
the original frame. The stabilized video 𝑉𝑠 can be obtained using this
transformation.

2.3. Fruit detection

2.3.1. Segmentation
Given a 𝑉𝑠, the segmentation process starts with the enhancement

of image contrast by means of histogram equalization. The objective
of histogram equalization is to obtain a transformation function, such
that the histogram of the transformed image is approximately uniform
across all intensity levels. Let 𝑝𝑟(𝑟) be the probability density function
(PDF) of the pixel intensities in 𝑉𝑠, as follows:

𝑝𝑟(𝑟) =
ℎ(𝑟)
𝑉𝑡

, (14)

where ℎ(𝑟) is the number of pixels with intensity level 𝑟. The total
umber of pixels is 𝑉𝑡 (image size of 𝑉𝑠 is width 𝑉𝑤 × height 𝑉ℎ). The

cumulative distribution function (CDF) 𝐶(𝑟) is as follows:

𝐶(𝑟) =
𝑟
∑

𝑖=0
𝑝𝑟(𝑖). (15)

The transformation function 𝑇 (𝑟) for each 𝑟 is as follows:

𝑉𝐻𝐸 = 𝑇 (𝑟) = (𝐿 − 1) × 𝐶(𝑟), (16)

where 𝐿 is the total number of intensity levels, typically 256 for an 8-
bit image. Each pixel in 𝑉𝑠 with 𝑟 is replaced with 𝑇 (𝑟) to obtain 𝑉𝐻𝐸 ,
that is, the histogram equalized image. After histogram equalization,
background removal is performed. In many applications, parts of an
image with depths greater than a depth threshold 𝑑𝑑 are considered
the background. By using the depth information of every pixel in 𝑉𝐻𝐸 ,
one obtains

𝑉𝐵𝑅(𝑝) =

{

𝑉𝐻𝐸 (𝑝) if 𝑑𝑝 ≤ 𝑑𝑑
0 otherwise.

(17)

ere, 𝑉𝐵𝑅 is the background removal image. To enhance the image
uality of 𝑉𝐵𝑅 and mitigate noise, a median filter is utilized. 𝑉𝑚 is
he resulting median filter image. Subsequently, the improved image
𝑚 is transformed into the hue, saturation, value (HSV) color space to
btain the HSV image 𝑉𝐻𝑆𝑉 . By building upon insights from the extant
esearch on cucumber-harvesting robots, a specific color range in the
SV space, characterized by 𝐻 ∈ [30, 255], 𝑆 ∈ [35, 200], 𝑉 ∈ [5, 140],

is used for segmentation. This leads to creation of the segmentation
mask, wherein each pixel 𝑝 is assigned a value of 1 if it falls within the
aforementioned HSV range and 0 otherwise.

2.3.2. Fourier spectrum-based band-stop filter (FSBF)
To enhance image clarity by improving the accuracy of contour

extraction and sharpening, the FSBF is employed (Fig. 5). As shown
in Fig. 5(a), (b), a comparison of the scenarios with and without
shaking reveals that the high-frequency area is widely distributed in
the scenario without shaking. By using this distribution, blurriness can
be calculated. In this work, by leveraging the fact that amplification
of the high-frequency area in the presence of shaking increases image
sharpness, a blurriness-based variable filter is applied to design the
FSBF.

First, convert 𝑉𝐻𝑆𝑉 to grayscale transformation image 𝑉𝑔 to make
it a single channel. 𝑉𝑔 is subjected to a two-dimensional Fourier trans-
form, which leads to the derivation of the magnitude spectrum 𝐹𝑠:

𝐹 (𝑢, 𝑣) =
∞ ∞

𝑉𝑔(𝑥, 𝑦)𝑒−𝑗(𝑢𝑥+𝑣𝑦)𝑑𝑥𝑑𝑦. (18)
∫−∞ ∫−∞
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Fig. 5. Fourier spectrum-based band-stop filter (FSBF) design: (a) Fourier spectrum corresponding to video without shaking, (b) Fourier spectrum corresponding to video with
shaking, and (c) variable filter design using Fourier spectrum.
Here, 𝑒 is the base of the natural logarithm, and 𝑗 is the imaginary
unit (equivalent to the square root of −1). From this expression, the
magnitude spectrum, 𝐹𝑠 is derived as follows:

𝐹𝑠(𝑢, 𝑣) = log10(|𝐹 (𝑢, 𝑣)| + 1). (19)

Blurriness 𝐹𝑏 is computed as the average magnitude of the spectrum:

𝐹𝑏 =
∑

𝐹𝑠(𝑢, 𝑣)
𝑉𝑡

, (20)

A smaller 𝐹𝑏 value indicates higher levels of blurriness in the video.
Second, to prevent such blurriness, a band-stop filter is designed

(Fig. 5(c)). The inner and outer radii 𝐶𝑖 and 𝐶𝑜, respectively, of this
filter are influenced by 𝐹𝑏:

𝐶𝑖 = 𝐶𝑖𝑖 + 𝐶𝑜𝑜𝐹𝑏 (21)

𝐶𝑜 = 𝐶𝑖 + 𝐶𝑜𝑜. (22)

Here, the constants 𝐶𝑖𝑖 and 𝐶𝑜𝑜 are determined empirically to define
the design of the band-stop filter. The mask 𝑀𝑓 (𝑢, 𝑣) of the band-stop
filter is constructed using the values of 𝐶𝑖 and 𝐶𝑜, and it is defined as
follows:

𝑀𝑓 (𝑢, 𝑣)

=

{

1 if (𝑢 − 𝑢𝑐 )2 + (𝑣 − 𝑣𝑐 )2 ≤ 𝐶2
𝑖 𝑎𝑛𝑑 (𝑢 − 𝑢𝑐 )2 + (𝑣 − 𝑣𝑐 )2 ≥ 𝐶2

𝑜

0 otherwise.
(23)

The spectrum is then filtered using this mask, as follows:

𝐹𝑓 (𝑢, 𝑣) = 𝐹𝑠(𝑢, 𝑣) ×𝑀𝑓 (𝑢, 𝑣). (24)

A predetermined 𝑀𝑓 (𝑢, 𝑣) is used to amplify the frequencies within this
mask for enhancing video clarity. After filtering, the inverse Fourier
transform is applied to obtain the sharpened video frame 𝑉𝑓 :

𝑉𝑓 (𝑥, 𝑦) = ∫

∞

−∞ ∫

∞

−∞
𝐹𝑓 (𝑢, 𝑣) ⋅ 𝑒𝑗(𝑢𝑥+𝑣𝑦) 𝑑𝑢 𝑑𝑣. (25)

2.3.3. Classification
In fruit classification, it is essential to differentiate a fruit from its

stem and any surrounding foliage. In cases where the color of the stem
or background is different from that of the fruit (e.g., tomatoes, non-
green bell peppers, strawberries, apples, and grapes), classification can
be accomplished straightforwardly by using the 𝑉𝐻𝑆𝑉 . However, the
color of cucumbers, the primary object fruit in this study, is similar to
that of the stem and background, that is, predominantly green.

In the case of cucumbers, characteristics such as fruit length and
diameter significantly influence consumer preferences. Mature cucum-
bers typically have various shapes and sizes, and consumers from dif-
ferent regions have specific preferences for various fruit shapes (Zhang
et al., 2019). In Korea, cucumbers are deemed ready for harvest-
ing when their length and diameter are approximately 250 mm and
6

40 mm, respectively. Therefore, harvest-ready cucumbers can be iden-
tified based on their measured length and width (aspect ratio of 1:6).

However, during the robot’s approach (i.e., pedicel entering the
cutting area), the region of interest (ROI) of the hand-eye camera in-
stalled on the EE is restricted. Consequently, only half of the cucumber
is detected in the ROI of the hand-eye camera. Given that the aspect
ratio of cucumbers is approximately 1:6, shapes with aspect ratios
of 1:3–1:6 are classified as cucumbers. By leveraging this attribute,
bounding boxes 𝑏𝑏 are generated around each detected outline in 𝑉𝑓 .
Any 𝑏𝑏 that does not conform to the aforementioned aspect ratio range
is eliminated. Objects that remain encapsulated within these 𝑏𝑏 are
classified as fruits 𝑂𝑓𝑟𝑢𝑖𝑡.

2.4. 6D pose estimation of pedicel

2.4.1. Calculation pertaining to feature point extraction
After classifying the cucumber as 𝑂𝑓𝑟𝑢𝑖𝑡, the subsequent step is to

discern the features corresponding to the approximate position of the
pedicel 𝑃𝑝𝑒. The pedicel is significant because it provides information
about the orientation and attachment of the cucumber.

The initial step is to delineate the contour of 𝑂𝑓𝑟𝑢𝑖𝑡. fitting an ellipse
around this contour is a standard approach in computer vision for shape
analysis. Subsequently, an ellipse is fitted around this detected contour.
A bounding box 𝑏𝑏𝑒 encapsulating the ellipse is computed, and it is
designated by its vertices, (𝑥1, 𝑦1) and (𝑥2, 𝑦2). Considering that the
pedicel’s position is roughly 3 mm higher than that of the cucumber,
the bounding box is translated upward by this distance, resulting in
(𝑥1, 𝑦1− 𝛿), where 𝛿 = 3 mm denotes the equivalent translation distance
in the image. The point of intersection of the elongated major axis of
the ellipse and the relocated 𝑏𝑏𝑒 is 𝑃𝑝𝑒. 𝑃𝑝𝑒 is 𝑝𝑢𝑠𝑒𝑟, and it is included in
one of the 100 corner points detected during ViS.

2.4.2. Fast point feature histogram (FPFH)
By using a specific pixel of the cucumber represented by 𝑃𝑝𝑒(𝑢𝑓 , 𝑣𝑓 ),

adjacent point clouds are grouped to form a region of interest (ROI)
(Fig. 6(b)). To convert the coordinate of this pixel into 3D point cloud
attributes, the depth information recorded by the depth camera and
the intrinsic parameters of the camera, (𝑓𝑥, 𝑓𝑦) are used. Using (𝑉𝑤, 𝑉ℎ)
and 𝑑𝑝, a 3D position vector of point (𝐗,𝐘,𝐙) within the camera’s
coordinate system is derived as follows:

𝐗 =
(𝑉𝑤 − 𝑐𝑥) ⋅ 𝑑𝑝

𝑓𝑥
, (26)

𝐘 =
(𝑉ℎ − 𝑐𝑦) ⋅ 𝑑𝑝

𝑓𝑦
, (27)

𝐙 = 𝑑𝑝. (28)

Here, (𝑐𝑥, 𝑐𝑦) symbolizes the principal point coordinates of the image,
typically at the center, and (𝑓𝑥, 𝑓𝑦) denotes the camera’s focal lengths
along the 𝑥 and 𝑦 axes. The ROI point cloud is aligned with (𝐗,𝐘,𝐙),
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Fig. 6. Histogram distribution of curvature: (a) curvature distribution and (b) curvature histogram.
and the set of point clouds inside the ROI is 𝐩𝑟. Considering the given
context, the for 𝐩𝑟 could be defined as follows:

𝐩𝑟 = 𝐩𝑝𝑜(𝐗𝑖,𝐘𝑖,𝐙𝑖) ∣
√

(𝐗𝑖 − 𝐗)2 + (𝐘𝑖 − 𝐘)2 + (𝐙𝑖 − 𝐙)2 ≤ 𝑅𝑜. (29)

𝐩𝑝𝑜(𝐗𝑖,𝐘𝑖,𝐙𝑖) represents the 3D points in the point cloud. 𝑅𝑜 is a
predefined radius that determines the size of the ROI around the point
of interest. The set 𝐩𝑟 consists of all points within the ROI that are
within a distance 𝑅𝑜 from the point of interest. For every point 𝑝𝑖 within
𝐩𝑟, the k-nearest neighbors are identified. By using these neighbors, the
surface’s normal and curvature at each point are computed. The FPFH
of a point 𝑝𝑖 is expressed as the following histogram (Rusu et al., 2009):

𝐅𝐏𝐅𝐇(𝑝𝑖) = 𝐒𝐏𝐅𝐇(𝑝𝑖) +
1
𝑘

𝑘
∑

𝑗=1

1
𝜔𝑘

𝐒𝐏𝐅𝐇(𝑝𝑗 ), (30)

where 𝑘 denotes the number of k-nearest neighbors of 𝑝𝑖, and 𝜔𝑘 is
a weight function that is typically defined as the inverse of distance.
𝐒𝐏𝐅𝐇(𝑝𝑖) = [𝛼, 𝜙, 𝜃] denotes the SPFH. As depicted in Fig. 7, the angles
𝛼, 𝜙, and 𝜃 are the angles between the normal vectors 𝐧𝑖 and 𝐧𝑗 of
points 𝑝𝑖 and 𝑝𝑗 , respectively, and they are computed as follows:

𝛼 = 𝐯 ⋅ 𝐧𝑖, (31)

𝜙 = 𝐮 ⋅ (𝐧𝑖 − (𝐯 ⋅ 𝐧𝑖)𝐯), (32)

𝜃 = arctan
(𝐰 ⋅ 𝐧𝑖
𝐮 ⋅ 𝐧𝑖

)

. (33)

The unit vectors 𝐮, 𝐯, and 𝐰 are defined as follows:

𝐮 =
𝐧𝑖 ⋅ 𝐧𝑗

‖𝐧𝑖 ⋅ 𝐧𝑗‖
, (34)

𝐯 = 𝐧𝑗 − (𝐮 ⋅ 𝐧𝑗 )𝐮, (35)

𝐰 = 𝐮 ⋅ 𝐯. (36)

FPFH employs 33 bins per point in the point cloud to succinctly capture
the extensive geometric and spatial attributes of the local neighborhood
around a point. These bins are pivotal for precisely depicting the
complex features and variations of the local surface. They incorporate
unique angular features and relationships between the point of interest
and its neighbors to provide a robust representation of the local surface
morphology. The sum of squared differences 𝑘𝑘 between the FPFH
histograms of a specific point and those of its neighboring points is
calculated accordingly:

𝑘𝑘(𝑝𝑖, 𝑝𝑗 ) =
33
∑

𝑘𝑘=1

(

𝐅𝐏𝐅𝐇(𝑝𝑖)𝑘 − 𝐅𝐏𝐅𝐇(𝑝𝑗 )𝑘
)2 . (37)

The normalized variance 𝑘𝑛𝑣 of 𝑘𝑘 for each point is calculated using the
following equation:

𝑘𝑛𝑣(𝑝𝑖) =
𝑘𝑘(𝑝𝑖) − 𝑘𝑘min . (38)
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𝑘𝑘max − 𝑘𝑘min
This approach enables visualization of the local geometric properties
and differences in properties between each point and its neighbors in
the point cloud. In this context, a calculated 𝑘𝑛𝑣 serves as a measure of
the curvature at each point within a point cloud. Given a set of points
𝑃 with associated curvatures denoted by 𝑘𝑛𝑣, the subset 𝑃𝑏 is defined
as 𝑃𝑏 = {𝑝𝑖 ∈ 𝑃 |𝑘𝑛𝑣(𝑝𝑖) ≥ 𝐶𝑑}, where each point 𝑝𝑖 in 𝑃𝑏 has a curvature
𝑘𝑛𝑣 greater than or equal to the predetermined curvature constant 𝐶𝑑
(Fig. 6(a)). This subset 𝑃𝑏 is called 𝑝𝑝𝑒𝑑𝑖𝑐𝑒𝑙 (Fig. 6(b)).

2.4.3. 6D pose estimation
The iterative closest point (ICP) algorithm is employed to accurately

estimate the 6D pose of the pedicel within the coordinate system of
the EE. The algorithm facilitates the alignment of two point clouds:
the target point cloud 𝑝𝑝𝑒𝑑𝑖𝑐𝑒𝑙, which represents the pedicel’s current
position, and a source point cloud. The source point cloud, denoted as
𝑝𝑐𝑜, is initially a copy of 𝑝𝑝𝑒𝑑𝑖𝑐𝑒𝑙 but is transformed iteratively to best
match 𝑝𝑝𝑒𝑑𝑖𝑐𝑒𝑙.

The transformation matrix 𝑇 , which aligns 𝑝𝑐𝑜 with 𝑝𝑝𝑒𝑑𝑖𝑐𝑒𝑙, is com-
puted through the ICP algorithm. The matrix 𝑄𝑐 , representing the
EE’s orientation and position, serves as a reference for aligning 𝑝𝑐𝑜
to the EE’s coordinate system. The ICP algorithm iterates, minimizing
the distance between 𝑝𝑐𝑜 and 𝑝𝑝𝑒𝑑𝑖𝑐𝑒𝑙, until convergence criteria based
on either a minimum distance threshold or a maximum number of
iterations are met. The mathematical objective of this alignment is
expressed as follows:

𝑇 ∗ = argmin
𝑇

𝑛
∑

𝑖=1

‖

‖

𝑇 ⋅ 𝑝𝑖 −𝑄𝑐 ⋅ 𝑝𝑐𝑜‖‖
2 . (39)

The derived transformation matrix 𝑇 ∗ from this process encapsulates
the 6D pose (position and orientation) of the pedicel relative to the EE.
It is important to note that 𝑝𝑐𝑜 is utilized as a mutable representation
of 𝑝𝑝𝑒𝑑𝑖𝑐𝑒𝑙 during the ICP process, allowing for the calculation of the
transformation matrix without altering the original pedicel point cloud
data.

2.5. 6D pose based visual servoing

6D pose based VS is employed to compute the control inputs that
minimize the error between the current pose of the robot’s EE and the
desired pose located within the EE’s truncation region. 𝐞𝑡 and 𝐞𝑟 denote
the translational (position) and rotational (orientation) errors, respec-
tively. The translational error is the difference between the current and
desired positions:

𝐞 = 𝐩 − 𝐩 . (40)
𝑡 𝑑 𝑐𝑝



Computers and Electronics in Agriculture 220 (2024) 108863Y. Park et al.
Fig. 7. For the query point 𝑝𝑖, the algorithm determines its simplified point feature histogram (SPFH) values by pairing it with its neighbors (shown in red). The SPFH values are
then re-weighted using its 𝑘-neighbors to form the 𝑝𝑖 fast point feature histogram (FPFH), where the added connections are depicted in black. A few pairs, highlighted by thicker
lines, are counted twice.
Here, 𝐩𝑑 denotes the desired position, and 𝐩𝑐𝑝 is the current position. In
Fig. 1(b), 𝐹𝑐∗ is 𝐩𝑑 , and 𝐹𝑐 is 𝐩𝑐𝑝. The rotational error is computed based
on the angle difference between the current and desired orientations:

𝐞𝑟 =
1
2
(𝜔𝑥𝐑𝑟 + 𝐑𝑇𝑟 𝜔

𝑇
𝑥 ). (41)

In this equation, 𝐑𝑟 denotes the current orientation matrix, and 𝜔𝑥 is
the skew-symmetric matrix derived from the axis-angle representation
of the desired orientation. After establishment of the error vector, the
following control laws are applied:

𝐩̇𝑐𝑝 = −𝜆𝑝𝐞𝑡 (42)

𝝎 = −𝜆𝜔𝐞𝑟. (43)

Here, 𝐩̇𝑐𝑝 is the linear velocity of the EE, 𝝎 is its angular velocity.
In our control scheme, the gain for linear velocity, denoted as 𝜆𝑝,
is carefully selected to ensure a balance between responsiveness and
stability during the robot’s approach to the target. The value of 𝜆𝑝
is chosen based on empirical testing and system dynamics analysis,
considering the need for precise yet smooth linear motion towards the
pedicel. Similarly, the gain for angular velocity, denoted as 𝜆𝜔, is set
to optimize the system’s ability to correct orientation errors without
inducing oscillations. This control law modulates the EE’s velocity to
ensure that the error vector converges to zero. In this specific context,
the desired pose corresponds to the 6D pose of the pedicel denoted
by 𝑇 ∗. Thus, the desired position and orientation can be expressed as
follows:

𝑇 ∗ =
[

𝐑𝑑 𝐩𝑑
0 1

]

. (44)

The current pose is characterized by the 6D pose of the EE, represented
as 𝑇𝑒. Therefore, the current position and orientation can be expressed
as follows:

𝑇𝑒 =
[

𝐑𝑟 𝐩𝑐𝑝
0 1

]

. (45)

To move the EE from its current pose 𝑇𝑒 to the desired pose 𝑇 ∗, 𝑒 is
used within a control loop to determine the robot’s movements.

3. Evaluation of proposed system

To assess the efficacy of the 6DRVS and validate it, preliminary
experiments were conducted in laboratory settings that closely emu-
lated a smart farm greenhouse by replicating the conditions employed
in prior studies (Park et al., 2023b). The parameters for 6DRVS are
shown in Table 2. These evaluations covered two critical dimensions:
perception accuracy and approach accuracy. During these experiments,
eight motion-capture cameras were deployed to measure the poses of
the fruit (in this case, cucumber) and the EE.
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Table 2
6DRVS of the parameters.

Parameters Specification

Process noise covariance, 𝑄 0.001
Measurement noise covariance, 𝑅 0.01

Pixels with intensity, 𝑟 3

Image size, 𝑉𝑤 × 𝑉ℎ 640 × 480 [pixels]
Depth threshold, 𝑑𝑑 300 [mm]

Inner radii, 𝐶𝑖 30 [pixels]
Outer radii, 𝐶𝑜 250 [pixels]
Parameters of the camera, (𝑓𝑥 , 𝑓𝑦) 545, 448 [pixels]

Predefined radius, 𝑅𝑜 30 [mm]
Predetermined curvature constant, 𝐶𝑑 0.7

Control gain, 𝜆𝑝, 𝜆𝜔 0.2, 0.2

3.1. Perception accuracy

The perception accuracy evaluations covered three critical dimen-
sions: Qualitative analysis of captured images: As depicted in Fig. 8,
in the absence of the 6DRVS, artifacts such as image and motion blurs
were often generated, which hampered accurate detection. However,
after 6DRVS integration, the numbers of such disturbances decreased
noticeably, leading to clearer and more consistent detection. Addi-
tionally, a Fourier spectrum-based quantitative method (expressed in
Eqs. (18)–(20)) was used to calculate blurriness. The findings indicated
that when the 6DRVS was applied, the blurriness was 0.548, whereas
without the 6DRVS, it was 0.414 (without shaking fruits: 0.792). These
values indicated a clear decrease in blurriness when using the 6DRVS,
which underscored the potential of the proposed system to achieve
high perception accuracy even when relying solely on computer vision
techniques.

Pixel representations were charted to visualize the stabilization
afforded by the 6DRVS more clearly (Fig. 9). The results indicated that
the 6DRVS enhanced the smoothness and stability of pedicel detection.
Frame rate performance in detection: In the 6DRVS-based pedicel
detection process, frame rates of 15–37 fps (640 × 480 images) were
achieved, which represented a remarkable improvement over the frame
rates of 3–18 fps achieved using traditional deep-learning-based recog-
nition techniques. Such continuous and rapid detection is paramount
for VS, given the inherent real-time manipulation requirements of
the method. The results of this experiment affirmed that increasing
the detection robustness significantly augmented the performance and
reliability of the 6DRVS system.
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Fig. 8. Detection test with/without 6D pose-based robust visual servoing (6DRVS) with occurrence of fruit shake.
Fig. 9. Stabilization of pedicel detection with/without 6DRVS in situations with shaking fruits.
Fig. 10. Approach trajectory with/without 6D pose-based robust visual servoing (6DRVS): (a) 3D plot and (b) 2D plot (𝑥𝑧).
3.2. Approach accuracy

First, the trajectory with/without the implementation of 6DRVS was
examined. The reference trajectory was determined by the shortest dis-
tance between the pedicel and the EE, which represents the trajectory
under optimal conditions. The resulting trajectories are depicted in
Fig. 10. The trajectory obtained by applying the 6DRVS method adeptly
traces the reference trajectory. This implies that the incorporation
of 6DRVS allowed for more accurate and efficient alignment of the
trajectory with the reference value, thus demonstrating the system’s
proficiency in terms of maintaining optimal proximity.

Second, the EE was set randomly within the camera’s ROI to ensure
that the fruit was visible, and it was subsequently moved to the target
pose. This process was repeated 𝑛 = 50 times. The objective, depicted
in Fig. 1(b), was to move 𝐹𝑐 on the image plane to 𝐹𝑐∗. By using the
motion-capture system, 𝐹𝑐 was designated as 𝑇𝑒 according to Eq. (45).
The position of 𝐹 was aligned with the fruit’s coordinate position 𝐹
9

𝑐∗ 𝑜
to guarantee that the pedicel was placed within the truncation region
of the EE. Here, 𝐹𝑐∗ corresponds to 𝑇 ∗ from Eq. (44). The pose error
is 𝑃𝐸 = 𝑇 ∗ − 𝑇𝑒. The root mean square error (RMSE) was used in the
validity calculations:

RMSE =

√

∑𝑛
𝑖=1 𝑃𝐸2

𝑛
. (46)

Table 3 and Fig. 11(b) consolidate the outcomes of the preliminary
experiments conducted to assess the efficacy of the 6DRVS system.
These experiments were crucial for evaluating how well the system
could align the pedicel within the truncation region of the proposed EE.
The findings indicated that the pedicel was positioned accurately within
this specific region, which is a prerequisite for subsequent operations.
With the assistance of the 6DRVS system, the EE could be moved
proficiently in real-time and aligned with the pedicel, as depicted
in Fig. 11(a). This implied that the proposed visual servoing system
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Fig. 11. Pose error of 6D pose-based robust visual servoing (6DRVS): (a) 3D scatter plot and (b) pose error.
Fig. 12. Experimental environment.
Table 3
Results of preliminary experiments for 6DRVS.

Position [mm] Orientation [deg]

𝑥 𝑦 𝑧 𝜙 𝜃 𝜓

PE average 1.60 −2.00 −0.37 1.50 −0.13 1.61
RMSE 3.27 4.23 1.77 2.00 3.76 3.14

was able to maintain the pedicel’s alignment within the cutting re-
gion, thereby ensuring the precision and efficiency of the maneuvering
process.

4. Field experiments

4.1. Experimental setup

To validate the effectiveness and reliability of the 6DRVS, field
experiments were conducted on cucumbers, which were the represen-
tative target fruit in these trials. The experiments proceeded in two
distinct cucumber farms located in Korea, as depicted in Fig. 12, to
ensure the availability of a diverse and comprehensive set of envi-
ronmental conditions and variables for assessing the versatility and
adaptability of the 6DRVS. In total, 100 cucumbers were harvested
during these experimental trials, and the resulting data were gathered
and analyzed. The experimental setup, execution, and results were doc-
umented to assess the perception and approach accuracy of the 6DRVS
under real-world, practical conditions. The 6DRVS methodology was
evaluated using two distinct criteria: perception accuracy and approach
accuracy. First, the perception accuracy was evaluated using standard
metrics such as precision, recall, accuracy, and F1-score. These metrics
are commonly used to assess the performance of classification mod-
els. Precision measures the proportion of true-positive identifications
among all positive identifications made; recall evaluates the proportion
of actual positives that are correctly identified; accuracy assesses the
10
Table 4
Field experiment results of proposed 6DRVS.

6DRVS Perception accuracy Approach accuracy

Success rate [%] Success [pcs] Success rate [%] Success [pcs]

Without 70.00 35 77.14 29
With 90.00 45 82.22 37

Table 5
Pedicel detection using 6DRVS: precision, recall, accuracy, and F1-score.

6DRVS Precision Recall Accuracy F1-score

Without 0.854 0.795 0.700 0.824
With 0.957 0.938 0.900 0.947

overall correctness of the model; and F1-score provides a balance be-
tween precision and recall. These metrics are crucial for understanding
the effectiveness and reliability of the classification models used in this
study. Second, approach accuracy was assessed by counting the number
of fruits that the system approached successfully. Owing to the practical
challenges associated with deploying a motion-capture system in field
environments, the length of the cucumber pedicels after they were cut
by the EE was used as an indicative metric of position accuracy. In
addition, system performance was evaluated against the approach time
measured in a previous study (Park et al., 2023b) (second approach
time in the previous study).

4.2. Experimental result

4.2.1. Perception accuracy
The results of the experiment are presented in Table 4. Implemen-

tation of the 6DRVS system yielded improvements across all evaluated
metrics. These outcomes highlighted the crucial role of the 6DRVS
system in the fruit detection task within the harvesting process. As
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Fig. 13. Results of field experiment.

summarized in Table 5, performance metrics such as precision, recall,
accuracy, and F1-score were computed. A comparative analysis with
prior experiments revealed that the perception accuracy improved.
The highest indicators in the previous study were precision, recall,
accrual, and F1-score, and their values were 0.957, 0.927, 0.890, and
0.942, respectively (Park et al., 2023b). When using the 6DRVS pro-
posed herein, the corresponding values were 0.957, 0.938, 0.900, and
0.947.

4.2.2. Approach accuracy
A comparison of the success rates achieved in the experiments

with and without the use of the 6DRVS, a significant improvement
was observed upon the integration of the 6DRVS. Specifically, in the
absence of the 6DRVS, the success rate was 77.14%. By contrast,
when the 6DRVS was used, the success rate increased noticeably to
82.22%. This enhancement, illustrated in Fig. 13, clearly demonstrated
the beneficial impact of incorporating the 6DRVS into the harvesting
process.

The approach accuracy in the cucumbers cutting process was as-
sessed by measuring the post-cut stem length, that is, the length of the
cut pedicel. The range of pedicel lengths corresponding to an accurate
approach was defined as 0 to 30 mm. If the length of the cut pedicel fell
within this range, the approach was considered accurate. The observed
lengths of the cut pedicels in this study ranged from 1 to 20 mm,
encompassing both the minimum and maximum extents of the cut
lengths. These findings indicated that the EE executed the approach
with a high level of precision, aligning accurately with the intended
target pose. This precision in terms of aligning and cutting within
this specified range of pedicel lengths reflected the effectiveness and
accuracy of the approach method used herein.

Compared to the previous approach time of 30.7 s, in this study, the
approach time decreased slightly to 29.3 s (Park et al., 2023b). This
improvement was attributed to the application of the 6DRVS, which
was designed to enhance the precision and stability of robots’ move-
ment trajectory. Owing to the stabilization of its approach trajectory,
the time required by the robot to approach its target is reduced. Thus,
the robot can complete its tasks more efficiently. This suggests that
the 6DRVS improved the control and accuracy of robotic movements,
thereby enhancing the overall performance of the specific task.

5. Discussion

5.1. Perception issue

The fruit harvesting domain introduces unique challenges in terms
of perception and manipulation, especially considering the diverse
nature of fruits. These challenges include predicting the direction of
fruits, prioritizing cluster fruits, and occlusion-related issues.
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5.1.1. Predicting the direction of fruits
The morphologies and growth patterns of fruits vary widely, and

they directly influence the complexity of robotic harvesting tasks. The
inherent linear shapes of elongated fruits, such as cucumbers, provide a
clear indication of the stem’s direction. This attribute ensures relatively
straightforward mapping of robotic EEs to ensure their alignment with
the fruit’s axis and effective execution of the harvesting task. By con-
trast, cluster fruits, such as tomatoes, present a more intricate scenario.
These fruits grow in bunches, and they are often tangled and overlap
each other. Consequently, the directions of their pedicels are neither
linear nor consistent. This variation demands a more sophisticated
perception mechanism to accurately predict the direction of each fruit
within the cluster. Mistakes in predicting this direction can lead to
improper cuts, potential damage to the fruit, or incomplete harvesting.
Hence, for cluster fruits, direction prediction is not only more complex
but also critical to ensure efficient and damage-free harvesting.

5.1.2. Prioritizing cluster fruits
Cluster fruits introduce a layered challenge in robotic harvesting.

A wrong choice could damage neighboring fruits, generate inefficient
harvesting sequences, or cause the system to miss ripe fruits while
picking less mature ones. For this reason, a harvesting priority should
be established. The factors influencing this priority include ripeness
of the fruit, ease of access to adjacent fruits, and predicted time to
harvest. Approaches to issue, such as harvest ordering, provide the
basis for solving problems with situations to determine the order of
harvest (Park et al., 2023b). However, given the dynamic nature of
cluster growth and the variabilities across different crops and growth
conditions, there is an emerging need for more adaptive and context-
aware priority-determination systems. These systems are expected to
leverage real-time data, possibly coupled with predictive analytics,
to make real-time decisions about which fruit to harvest next. Such
approaches would not only ensure the desired produce quality but also
increase the efficiency and effectiveness of robotic harvesters.

5.1.3. Occlusion issues
Detecting fruits that are occluded by obstacles and subsequently

accessing their pedicels is significantly challenging. In this study, the
authors focused on occluded fruits and conducted experiments in open
spaces after defoliation. To address occlusion, Kim et al. (2023) pro-
posed a methodology centered on cucumber segmentation and occlu-
sion recovery. They employed amodal segmentation coupled with a
U-net reconstruction network. This segmentation technique diligently
recovered the parts hidden from view by considering both the visible
and obscured portions of a cucumber. Following detection, a skeleton
was extracted based on the cucumber’s identified region to pinpoint the
pedicel meant for cutting.

However, challenges persist. Even with successful pedicel detection
in an occluded cucumber, the dense foliage surrounding the cucumber
can obstruct the EE’s trajectory. To solve this problem, SepúLveda
et al. (2020) are investigating the use of dual-arm robots. Their ap-
proach aims to recognize occluded fruits and, subsequently, clear the
obstructing foliage by leveraging the direction vector of the leaves, thus
creating an accessible path to the target fruit. This strategy hinges on
cooperative control between the two robot arms. Such innovations hint
at future research in this domain, which seems to be poised to explore
the potential of dual-arm harvesting robots.

5.2. Control issue

In this study, a specific controller for manipulator control was not
designed. Instead, a conventional approach was adopted, and 6DRVS
was implemented by employing the widely used position-based VS
method. During harvesting, the manipulator or EE may come into
contact with the fruit, causing the fruit to shake. Such shaking can
abruptly shift the fruit’s coordinates, which may cause the manipulator
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to move abruptly. Such abrupt movement can, in turn, induce sec-
ondary contact-induced fruit shaking. From the perception standpoint,
such shaking can induce motion blur, thereby increasing the complexity
of the harvesting process and increasing the detection time, which
extends the overall harvesting duration.

To address these challenges, Xu et al. (2022) introduced adaptive
VS. This method adaptively adjusts the parameters of the transforma-
tion matrix to minimize the distance between the EE’s trajectory and
the reference trajectory. Their experimental results demonstrated that
the EE was able to track the reference trajectory with high precision
by using adaptive learning. Furthermore, Mehta et al. (2016) devel-
oped a robust image-based visual servo controller to adjust a robot
manipulator with respect to a target fruit in the presence of unknown
fruit movements. A Lyapunov-based stability analysis ensured uniform
ultimate bounded control of the robot EE relative to the target fruit.

While research on RVS through controller design is ongoing, there
is a pressing need for additional research in the agricultural sector, par-
ticularly on harvesting robots. The inherent complexities and dynamic
nature of agricultural environments, combined with the importance of
precise and gentle handling, underscore the significance of these efforts.

5.3. Delayed harvesting time issue

The principal factors contributing to the delayed harvesting time
are twofold: firstly, the imperative to minimize potential damage to
the fruits and surrounding vegetation; and secondly, the necessity for
precise and cautious navigation to access the pedicel. To elaborate,
the robotic system is designed with an inherent emphasis on the
delicate handling of agricultural produce to ensure that the quality of
the fruits remains uncompromised throughout the harvesting process.
This entails meticulous control and slower movements, which, while
enhancing safety and precision, inadvertently extend the overall time
required for harvesting.

Moreover, the pedicel, which is crucial for a successful harvest,
necessitates accurate identification and approach. The complexity of
this task is magnified by the diverse orientations and positions of
pedicels in a natural setting, coupled with the dynamic environmental
conditions of outdoor farms. These factors necessitate a careful and
measured approach to accurately position the harvesting mechanism,
further contributing to the lengthier harvesting time.

To mitigate these challenges and potentially expedite the harvesting
process without compromising on safety or accuracy. These include:
(1) leveraging more sophisticated machine learning algorithms that can
more accurately and rapidly identify the pedicel and assess the optimal
approach path. This could reduce the time spent on these tasks while
maintaining high precision. (2) the deployment of advanced sensing
technologies could provide richer environmental data, enabling quicker
adaptation to varying conditions and more efficient path planning.

6. Conclusions

This study introduced a fast and stable pedicel detection approach
for RVS, supplemented with ViS and fast pedicel detection, to realize
automated harvesting of shaking fruits. This study successfully imple-
mented the 6DRVS system, a composite of ViS, FSBF, and FPFH-based
6D estimation. The inclusion of ViS effectively addressed motion blur,
ensuring stable segmentation and classification during image prepro-
cessing. Additionally, video clarity was improved by using an FSBF that
adapts to blurriness. Following this stabilization, the system estimated
the approximate pedicel location through coordinate estimation. Sub-
sequently, point clouds within a defined range around this estimated
location were extracted. By utilizing the FPFH, the system was able to
differentiate between fruits and pedicels based on curvature differences
in the normal vectors of the point cloud. Clusters of point clouds
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exceeding a certain curvature threshold were identified as pedicels.
Then, 6DRVS was implemented to locate the EE can until extraction
of the 6D pose.

The 6DRVS, with its capability to compute a fast and stable 6D
pose at 19–37 fps, guarantees real-time visual servoing. This ensures
effective fruit harvesting, even when fruits shake. Preliminary experi-
ments were conducted in a lab environment mirroring real smart farms
to evaluate the 6DRVS. The findings confirmed the system’s ability to
robustly servo to the target position, and location errors were analyzed
to identify improvements over previous studies. For further validation,
field tests involving 100 repetitions of the experiment were conducted
at two farms in Korea. The system was evaluated in terms of its
precision, recall, accuracy, F1-score, perception accuracy, and approach
accuracy. The results obtained using the 6DRVS (0.957, 0.938, 0.900,
0.947, 90.00%, 82.22%) indicated a performance enhancement com-
pared the results obtained when not using the 6DRVS (0.854, 0.795,
0.700, 0.824, 70.00%, 77.14%). In addition, the access rate improved
from 77.14% to 82.22%. These experimental results convincingly attest
to the efficacy of the 6DRVS system. The enhancements provided
by the 6DRVS system can significantly optimize the fruit harvesting
process, leading to improved productivity. In conclusion, application
of the 6DRVS system is promising from the perspective of enhancing
automated fruit harvesting.
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