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ABSTRACT
Early detection of wasp hives is crucial for mitigating their impact on native species, preventing agricultural damage, and im-
proving pest control strategies. Traditional detection methods rely on ground surveys and sensor-based tracking of individual 
insects, which are often labor-intensive, time-consuming, and prone to errors because of environmental constraints. The inte-
gration of artificial intelligence and drone-based imaging has the potential to revolutionize ecological monitoring by providing 
scalable, efficient, and noninvasive methods for detecting wasp hives. However, research on AI-assisted hive detection remains 
limited, with most studies focusing on large-scale wildlife monitoring rather than small-object localization. Therefore, we pro-
pose a system for searching the candidate site of a wasp hive using a small drone. In the proposed system, a small drone is 
equipped with a camera and takes aerial images of the error range. Subsequently, three-dimensional (3D) modeling is performed 
on the captured images using a 3D surveying toolkit, and deep learning–based hive detection is performed on the completed 3D 
model to extract the GPS information of the detected target.

1   |   Introduction

Artificial intelligence (AI) has progressed rapidly in recent years, 
driving innovation in various industries (LeCun et  al.  2015; 
Schmidhuber  2015). In particular, the advancement of deep-
learning and machine-learning technologies has considerably ex-
panded the applicability of AI in fields such as medicine (Esteva 
et al. 2017) and manufacturing (Wang et al. 2018). These tech-
nologies have demonstrated performance that surpasses human 
intuition in solving complex problems (Bengio et al. 2017; Silver 
et al. 2016) and have achieved outstanding results in data anal-
ysis (Chui et al. 2018), predictive modeling (Jordan and Mitchell 
2015), and automated systems (Jafari et al. 2022).

One promising yet underexplored application of AI is ecosystem 
management (Han et al. 2024; Maxwell et al. 2016), which re-
mains in its early stages of development (Christin et al. 2019). 
Ecosystem management is essential for environmental protec-
tion and the sustainable use of natural resources, playing a vital 
role in maintaining the health of the Earth (Mace et al. 2018; 
Ceballos et  al.  2017). However, because of the complexity of 
ecosystems, data collection and analysis in this field present sig-
nificant challenges (Farley et al. 2018). Recently, there has been 
growing interest in leveraging AI for ecosystem monitoring; 
however, many technical challenges remain (Borowiec et  al. 
2022). For instance, drone-based monitoring has the potential to 
provide rapid ecological assessments, yet AI's role in accurately 
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analyzing and interpreting this data requires further investiga-
tion (Anderson and Gaston 2013; Linchant et al. 2015).

Searching for wasp hives is a critical task in ecosystem manage-
ment. Although previous research has focused on tracking indi-
vidual insects using miniaturized sensors (Walter et al. 2021), 
this approach has limitations because of tracking errors and 
sensor weight constraints (Kim, Ju, and Son 2022). However, in 
many ecological applications, identifying the precise location of 
hives rather than individual insects is more practical and effec-
tive. Early detection of wasp hives can help mitigate ecological 
imbalances, prevent agricultural damage, and improve biodiver-
sity conservation efforts. Therefore, developing an AI-assisted 
searching system to efficiently search for wasp hives is neces-
sary to enhance ecosystem monitoring (Mirzaei et al. 2023).

Currently, research utilizing AI in ecosystem management 
mainly focuses on estimating the population of wild animals 
and monitoring environmental changes using image recogni-
tion and analysis (Tsouros et al. 2019). However, although exten-
sive studies exist on large-scale ecosystem monitoring, research 
on hive detection remains limited, despite its significance in bio-
diversity conservation and pest control. Identifying and locating 
hives, such as wasp, is crucial for effective ecological studies 
and environmental management. To improve hive localization, 
more precise and efficient AI-driven solutions are required 
(Rozenbaum et al. 2024). In particular, integrating drone-based 
imaging with AI-powered analysis can significantly enhance 
hive detection from high-resolution aerial images, enabling the 
development of more accurate ecosystem-management strate-
gies (Tang and Shao 2015).

Our research group has developed a wireless telemetry–based 
tracking system for ecosystem management that performs aerial 
tracking using unmanned aerial vehicles (UAVs) equipped with 
receivers and antennas. Similar to other sensor network–based 
studies, our tracking strategy includes three steps: capturing the 
sensor, attaching it to the target, allowing a rest period for recov-
ery, and then performing the actual tracking. Despite these ef-
forts, our system still had a tracking error of approximately 50 m 
(Kim et al. 2019; Kim, Ju, and Son 2022). Later, we developed 
and evaluated a multiantenna-based system to reduce the track-
ing error but found that the tracking error was around 20–40 m 
(Kim, Pak, et al. 2022). These findings highlight the need for ad-
vanced AI-driven methods that can overcome existing tracking 

limitations and enhance the accuracy of wasp hive search in 
ecological monitoring.

In this paper, we propose an AI-driven drone system for effi-
cient wasp-hive candidate site search. The system aims to en-
hance hive localization accuracy by leveraging aerial imagery 
and deep-learning–based recognition (Figure 1). The proposed 
system utilizes a small drone equipped with a camera to search 
for a wasp hive within the identified error range. The camera 
captures the images of the region of interest (ROI), and the 
drone provides GPS coordinates for the capture point. These 
images are then used to create an extensive map, upon which 
deep learning–based object recognition is performed. Finally, 
the GPS coordinates of the recognized points are extracted to 
estimate the precise location of the wasp hive.

1.1   |   Related Works

1.1.1   |   AI-Based Ecosystem Management 
and Monitoring

In recent years, AI technology has begun to play an important 
role in ecosystem management and monitoring. In particular, 
the advancement of image recognition and analysis technology 
has enabled various applications such as wildlife protection, 
biodiversity monitoring, and environmental change monitor-
ing. Borowiec et  al.  (2022) conducted an in-depth review of 
how deep learning technology can be applied in ecological 
and evolutionary research. They discussed how AI, particu-
larly deep learning, holds the potential to replace traditional 
manual-based methods currently used in ecosystem manage-
ment. The study highlighted that deep learning enables the 
automated analysis of complex ecosystem datasets, facilitating 
real-time monitoring and rapid responses to environmental 
changes.

Anderson and Gaston (Anderson and Gaston 2013) emphasized 
the innovative changes that combining AI with drone technol-
ogy would bring to spatial ecology research. They explained 
that the combination of high-resolution image collection using 
drones and AI-based analysis has enabled a more precise under-
standing of the spatiotemporal patterns of ecosystems. Linchant 
et al.  (2015) also emphasized the importance of AI in wildlife 
monitoring using drones and argued that the integration of 

FIGURE 1    |    Concept of a system for searching the candidate site.
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drones and AI facilitates a more precise analysis of the distribu-
tion and behavior of species.

However, the abovementioned studies mainly focused on mon-
itoring large animals or the ecosystem status of specific areas, 
and scarce attention was paid to tracking and monitoring small 
objects such as insects. Rozenbaum et al. (2024) successfully de-
veloped an AI-based system to monitor the movements of small 
organisms, such as insects, utilizing machine learning tech-
niques to analyze their movement paths and behavioral patterns. 
This advanced technology is particularly effective in tracking 
the critical roles insects play within ecosystems, enabling real-
time detection of their responses to environmental changes. The 
application of such systems has proven to be instrumental in 
rapidly assessing insect behavior, providing valuable insights 
into ecological dynamics and aiding in the management of en-
vironmental shifts.

1.1.2   |   Sensor Networks and AI for Tracking 
Small Objects

Tracking the location of small objects such as insects is an im-
portant task in ecosystem research, and various studies based 
on sensor networks are being conducted to solve the problems 
faced in performing this task. Kim, Ju, and Son (2022) pointed 
out the limitations of sensor networks in studying the movement 
patterns of small animals, specifically emphasizing that track-
ing errors that occur during the miniaturization of sensors can 
hinder the accuracy of the research.

Walter et al. (2021) review methods for small object detection, em-
phasizing the shortcomings of current sensor technologies in han-
dling tiny objects and the need for improved AI-driven solutions 
for real-time tracking. To address these challenges, researchers 
have proposed combining sensor networks with AI-based image 
analysis technologies, which offer better accuracy and efficiency 
in tracking small insects in real-world environments.

Wang et  al.  (2023) proposed a deep learning–based approach 
to detect small objects in complex scenes and showed that this 
method could be effectively used to track small objects such as 
insects. This study suggests that deep-learning models utilizing 
high-resolution images can reduce errors that occur in sensor-
based approaches. Tsouros et al. (2019) also discussed how the 
combination of small sensors and AI can be used for crop mon-
itoring in precision agriculture based on UAVs, suggesting that 
similar technologies can be applied to ecosystem management.

On the basis of existing studies, the present study proposes a 
technology to search for habitat candidates for small individuals 
in terms of ecosystem management using a new approach com-
bining drones and AI. This will contribute to the identification of 
habitat locations of small entities such as insects with greater pre-
cision and increase their applicability in ecosystem management.

2   |   Candidate Site Search System

In this study, we propose a small-drone–based wasp-hive-
searching system that comprises two main processes: aerial 

image–based mapping and wasp hive estimation. This system 
employs the 3DR Solo drone as an exploration tool, capturing 
high-resolution aerial images with a GoPro Hero4 Black camera. 
The acquired images are processed on a computer system for 
three-dimensional (3D) mapping and object recognition. Drone 
control and image acquisition are managed by Pix4D Capture 
software, and location information is obtained from the GPS 
sensor mounted on the drone (Figure 2). This allows for precise 
location mapping and efficient data collection, serving as the 
foundation data for an enhanced object-recognition algorithm.

The wasp hive estimation strategy involves a drone moving 
to a specific location via sensor network–based tracking. This 
location is designated as an ROI, considering the error range, 
and aerial image capture is performed in that region. Captured 
images are transmitted to the ground control center, where 3D 
mapping is performed using OpenDroneMap (ODM), an open-
source photogrammetry toolkit. The 3D-mapped images are an-
alyzed by a deep learning–based object recognition algorithm. 
The mapped image is repeatedly rotated, and a recognition task 
is performed to accurately identify the wasp hive. Yolov5 is used 
for object recognition, and when the wasp hive is recognized, 
the GPS information of the location is extracted and used as pre-
cise geographical information (Figure 3).

2.1   |   Capturing Aerial Images

The proposed system uses 3DR Solo and a GoPro HERO4 Black 
camera to capture aerial images and evaluate habitat candi-
dates. The drone and camera are connected through a dedicated 
gimbal, which blocks noise caused by disturbance or vibration 
during flight. When capturing aerial images, the images do not 
contain geometrical data. Therefore, the drone's GPS informa-
tion is saved at each shooting time. Additionally, the proposed 
system performs two flights within one area to prevent distor-
tion during the future map production process. For the first 
flight, image capture is performed without a set path and sep-
arate camera tilting. Subsequently, in the second flight, it flies 
by rotating 20° compared with the first flight, and images are 

FIGURE 2    |    Architecture of the small-drone–based wasp's hive es-
timation system.
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taken by tilting the camera forward by 5°. The corresponding ae-
rial image capture and flight control are performed using Pix4D 
Capture.

2.2   |   Mapping for ROI

Images captured by GoPro HERO4 do not include the exchange-
able Image File Format for geographic information. Therefore, 
geotagging is performed on each image using the drone's GPS 
sensor data. Each image includes time data at the moment of 
shooting, and the drone's GPS data also store information at that 
time. We selected the GPS information of the shooting location 
by matching the shooting time information of the image with the 
time of the GPS data and performed geotagging on each image. 
Next, ODM is used for image-based 3D map production, which 
includes geographic information. ODM is an open-source pho-
togrammetry toolkit that processes aerial images into maps and 
3D models. ODM processes images using the structure-from-
motion (SfM) algorithm, estimating the position and orientation 
of the camera and generating a 3D point cloud. The point cloud 
data are converted into a mesh, and a textured 3D model is gen-
erated via a texturing process. The resulting 3D model is saved 
in .obj and .ply format. In addition, metadata including geotag-
ging is attached to the model, so that all points in the model con-
tain geographic location information.

2.3   |   Detection and Extract GPS

The process of capturing images from various angles from a 3D 
model and recognizing objects in the images using the You Only 
Look Once (YOLO) algorithm was performed as follows. First, 
the generated 3D model file was loaded using QGIS software. 
QGIS is an advanced 3D modeling and rendering tool that pro-
vides the ability to visualize 3D models from various angles and 
capture them as images. After loading the 3D model, the cam-
era viewpoint was set to surround the model in a circular shape 

to observe and capture the overall structure of the model from 
various viewpoints. The camera position was expressed as (xc, 
yc, zc) in the world coordinate system, and the camera direction 
(rotation matrix Rc) was adjusted so that the camera faces the 
center of the model.

After the camera viewpoint was set, the camera was rotated 
around the model, and images were captured at regular angular 
intervals. For example, the camera was moved at 10° intervals 
during a 360° rotation and a total of 36 images were captured. 
Each image contained the camera position (xc, yc, zc) and ro-
tation Rc information. This information was later used in the 
process of conversion into 3D model coordinates. The captured 
images reflected the structure of the 3D model at each point in 
time and enabled the detection of objects in the model from var-
ious angles.

The YOLOv5 model was used to recognize objects from the 
captured images. YOLOv5 is a real-time object detection model 
that shows excellent performance in object recognition and can 
detect multiple objects in an image simultaneously by a single 
forward pass. The YOLOv5 model, which was trained by aug-
menting 147 of wasp-hive images into 514 images, was used to 
perform object recognition on each image.

The Yolov5 model was applied to each captured image to detect 
objects. The center point of the 

(
xmin, ymin, xmax, ymax

)
 coordinates 

representing the bounding box of the detected object was cal-
culated to extract the two-dimensional (2D) image coordinates 
(u, v), which are defined as follows:

The process of converting the 2D image coordinates extracted 
by Yolov5 into the coordinates of the 3D model is performed 
via the inverse projection process using the camera matrix and 
external parameters. First, the matrix K of the camera for each 
viewpoint is defined as follows:

where fx, fy represent the focal length of the camera and cx, cy 
represent the principal point of the image sensor.

The camera position and orientation at each viewpoint are de-
fined by the rotation vector R and the transformation vector T. R 
represents the rotation in 3D space, and T represents the camera 
position. These values are defined according to the camera posi-
tion and rotation information set in QGIS. Afterwards, using the 
given 2D image coordinates (u, v), camera matrix K, and exter-
nal parameters R,T, the 3D model coordinates Xtarget = (X,Y,Z) 
are calculated using the following formula:

(1)(u, v) =
xmin + xmax

2
,
ymin + ymax

2
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⎡
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FIGURE 3    |    Flowchart of wasp-hive candidate site searching system.
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where λ is a scale vector, which represents the depth in the Z-
axis direction in 3D coordinates.

3   |   Experiments and Results

To evaluate the developed system, experiments were designed 
in two environments: an urban environment and a forest exper-
iment. In the case of wasps, it has been reported that they leave 
the forest, create hives in urban areas, and cause damage to civil-
ians. Therefore, we evaluate the search performance in the urban 
environment by considering wasps that had expanded their habi-
tat beyond the forest and into the city center. In the second exper-
iment, a field experiment was conducted in the forest to explore 
the hives of wasps living in the forest, which is their main habitat.

3.1   |   Experiment in an Urban Environment

3.1.1   |   Experiment Setup

To verify the wasp-hive search performance of the proposed system 
within the city, an experiment was designed for three wasp-hive 
models, and the experiment was repeated five times (Figure  4). 
The experiment location was at Chonnam National University in 
Gwangju, Korea, and a search was conducted over an area 100 m 
in width and length. Three wasp-hive models were installed on 
the roof of the building. The three hive models performed one 
search and then changed locations to conduct a re-search. To pre-
vent influence from various structures on campus, the drone was 
maintained at an altitude of 60 m, and if a problem occurred while 
acquiring image data, it returned to the home base to ensure the 
quality of the mapping product. After completing aerial image ac-
quisition of the area of interest, the data were transferred to the 
ground control center to perform mapping and hive detection.

3.1.2   |   Experiment Result

The results of five search experiments are presented in Table 1, 
where “—” indicates cases where target recognition failed, pre-
venting GPS coordinates from being extracted. In the first search, 

one of the three hive models was recognized, and when the ac-
tual GPS coordinates of the recognized model were compared 
with the extracted GPS coordinates, an error of approximately 
23 m was confirmed. In the second search, one of the three hive 
models was recognized, and when the actual GPS coordinates 
of the recognized model were compared with the extracted GPS 
coordinates, an error of around 17 m was observed. In the third 
experiment, one of the three models was also recognized; when 
the actual GPS coordinates of the model were compared with 
the extracted GPS coordinates, an error of about 25 m was found. 
In the fourth experiment, recognition failed. Finally, in the fifth 
experiment, one model was recognized, and when the actual 
GPS coordinates of the model were compared with the extracted 
GPS coordinates, an error of about 2 m was confirmed.

3.2   |   Experiment in a Forest Environment

3.2.1   |   Experiment Setup

Unlike the experiment in an urban environment, to verify the 
wasp-hive search performance of the proposed system in the for-
est, an experiment on two wasp hive models and one actual hive 
was designed and repeated three times (Figure 5). The experiment 
location was at Modeungsan Mountain in Gwangju, Korea, and 
a search was conducted over an area 100 m in width and height. 
Two wasp hive models and one actual hive were randomly placed 
within the range of interest. Three targets were searched once; 
then their locations were changed and searched again. To prevent 
influence from various structures in the forest, the drone was 
maintained at an altitude of 60 m, and if a problem occurred while 
acquiring image data, it returned to the home base to ensure the 
quality of the mapping product. After completing aerial image ac-
quisition of the area of interest, the data were transferred to the 
ground control center to perform mapping and hive detection.

3.2.2   |   Experiment Result

We conducted a model search experiment in an actual moun-
tainous area using the proposed system. The experiment was 
designed to evaluate the performance of the system in a complex 

FIGURE 4    |    Experiment setup in an urban environment.
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natural environment, and after randomly placing two models 
and an actual hive, the search process was repeated. The experi-
ment was conducted three times, where the location of the mod-
els was changed each time. The experimental results revealed 
that the proposed system failed to detect the target model in all 
three experiments. The mountainous area where the experi-
ment was conducted had a very complex structure with various 
natural objects such as grass and trees. The diverse appearances 
and shapes of these natural objects compared with urban envi-
ronments led to a rapid increase in the number of feature points 
extracted from images acquired by drones. This apparently had 
a negative impact on the quality of the 3D model, which in turn 
led to errors in the object detection process.

4   |   Discussion

In this study, we developed an AI-driven drone system for wasp 
hive candidate site search to address the limitations of tradi-
tional tracking methods. Unlike previous sensor-based tracking 
approaches, which often suffer from localization errors and en-
vironmental constraints, the proposed system integrates aerial 
imaging, 3D modeling, and deep learning–based hive detection 
to enhance accuracy. The results demonstrate that this method 
significantly improves detection capabilities in controlled urban 
environments. However, several challenges remain when apply-
ing the system to complex real-world scenarios.

One of the main limitations observed in this study is the rec-
ognition success rate across different environmental conditions. 
Although the system performed well in urban settings, as de-
tailed in Section 3.2.2, its detection rate in a real forest environ-
ment was considerably lower. Factors such as dense vegetation, 
lighting variations, and background noise may have impacted 
the deep learning model's ability to accurately distinguish hives 
from their surroundings.

To overcome these limitations, future research should focus 
on enhancing the robustness of the detection model by 

TABLE 1    |    Experimental results for three hive models in an urban 
environment. GPS refers to the mobile phone–based GPS information at 
the location where each model was installed. Extracted GPS represents 
the GPS information obtained using our system.

Trial 1 GPS Extracted GPS

Model 1 35.176152, 126.900629 35.17632061997591, 
126.9007887008157

Model 2 35.175642, 126.900801 —

Model 3 35.175567, 126.900933 —

Trial 2 GPS Extracted GPS

Model 1 35.176261, 126.900733 —

Model 2 35.175688, 126.900900 —

Model 3 35.175893, 126.901099 35.1759939282907,
126.90124727350667

Trial 3 GPS Extracted GPS

Model 1 35.175996, 126.901241 —

Model 2 35.175727, 126.901020 —

Model 3 35.176349, 126.900734 35.176130114698026,
126.90066821109794

Trial 4 GPS Extracted GPS

Model 1 35.176344, 126.900913 —

Model 2 35.176082, 126.901531 —

Model 3 35.176017, 126.901417 —

Trial 5 GPS Extracted GPS

Model 1 35.175996, 126.901241 —

Model 2 35.175727, 126.901020 35.175721299322156,
126.90100218870104

Model 3 35.176349, 126.900734 —

FIGURE 5    |    Experiment setup in a forest environment.
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incorporating adaptive algorithms capable of handling diverse 
environmental conditions. Specifically, integrating LiDAR-
based depth perception could enhance detection performance 
in dense vegetation by providing additional geometric context. 
Furthermore, thermal imaging could help distinguish wasp 
hives from their surroundings by leveraging temperature dif-
ferences, thereby addressing the limitations of conventional 
RGB-based detection. Additionally, developing more ad-
vanced deep learning models trained on a broader range of 
real-world data could further mitigate recognition errors and 
improve overall system performance.

Despite these challenges, the proposed system offers a scalable 
and efficient solution for wasp hive detection, contributing to 
AI-driven ecological monitoring and pest control strategies. In 
future work, we plan to improve detection accuracy and track-
ing success rates by incorporating thermal camera data into the 
system. Because wasp hives maintain an optimal temperature to 
support larval development within the colony, leveraging ther-
mal imaging could provide valuable additional features for hive 
detection. Based on this principle, our goal is to continuously re-
fine and enhance the proposed system to improve its searching 
performance and contribute to ecosystem management. Future 
work will focus on further optimizing the system's capabilities 
for real-world applications, ensuring greater reliability in both 
urban and natural environments.

5   |   Conclusion

In this study, we propose a system for searching the candidate 
site of wasp hives using a small drone and conduct the exper-
iment in two environments. A drone equipped with a camera 
takes aerial images of the ROI and stores geographical infor-
mation, and the ground control center geotags and produces an 
ODM-based 3D model. Then, Yolov5-based wasp-hive recogni-
tion is performed, and GPS coordinates of the recognized ob-
jects are extracted. Experiments on three models in an urban 
environment were designed and conducted, and four out of 15 
models were recognized and GPS information was confirmed. 
Afterwards, in a forest environment, two models and one actual 
hive were tested, where nine models were not recognized. In 
this process, AI performed precise analysis that could compen-
sate for errors in sensor-based tracking, indicating the potential 
for a new tool in ecosystem management. Thus, this study will 
contribute to complementing areas where AI technology has 
been lacking in ecosystem management, particularly solving the 
problem of precise location estimation and candidate site selec-
tion in small object tracking. Beyond simple technological ad-
vancement, this approach could provide practical solutions for 
ecosystem protection and sustainable environmental manage-
ment and is expected to be expanded through further research 
and applications.
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