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ABSTRACT This paper proposes a hybrid system comprising multiple unmanned aerial vehicles (UAVs)
to monitor nature. The proposed tributary mapping system consists of perception and control systems.
A perception system is established for tributary mapping using three-dimensional light detection and ranging
(LiDAR) semantic segmentation for surface water recognition. The system defines a water point cloud and
segments the surface water area using singular value decomposition, applying the water-absorbing property
of LiDAR. A path is generated through random sample consensus by calculating the center point from
the segmented area. Each UAV is modeled using a continuous-time dynamic-based low-level model and a
discrete event-time dynamic-based high-level model to control the multiple UAVs system. The desired plant
behavior is designed considering the control objectives of the plant, and a supervisory controller is developed
accordingly. A physics-based robot simulator is employed to verify the proposed tributary mapping system
in perception and path generation and the performance of the hybrid system-based supervisory controller.

INDEX TERMS Tributary mapping, semantic segmentation, hybrid system, supervisory controller,
simultaneous localization and mapping.

I. INTRODUCTION
Mapping and managing tributaries is pivotal in agricultural
crop production and natural ecosystem conservation. The
topographical features of agricultural land and tributaries
significantly influence crucial factors such as water flow
dynamics, soil erosion patterns, and groundwater recharge
rates. Effective tributary mapping is vital to optimize mois-
ture management in agricultural land, mitigate erosion risks,
and promote sustainable agricultural practices. In agricultural
contexts, widespread tributary networks directly affect water
distribution and utilization, profoundly influencing crop
yields and productivity. Similarly, tributaries are vital in natu-
ral ecosystems that shape ecosystem health and biodiversity.
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Changes in tributary characteristics can disrupt the ecological
balance and jeopardize biodiversity, highlighting the critical-
ity of tributary mapping and management in conservation
efforts. Therefore, tributary mapping and management are
increasingly recognized as essential tasks for enhancing
agricultural productivity and conserving natural ecosystems.

Despite the recognized importance of tributary mapping,
conventional methods are often limited, particularly in
the context of vast and complex agricultural landscapes.
Traditional approaches typically entail manual data col-
lection through on-site surveys, yielding highly accurate
data, but are time-consuming and require extensive human
involvement. Alternatively, remote sensing techniques [1],
[2], such as satellite-based aerial imaging, help remotely
acquire tributary-related information, reducing labor and time
requirements. However, these savings often come at the
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cost of accuracy and detail of data. Robotics technology is
increasingly used in diverse fields, including agriculture [3],
ecosystem management [4], and environmental monitor-
ing [5] to address these challenges.

Both unmanned ground vehicles (UGVs) and unmanned
aerial vehicles (UAVs) are used to monitor the natural
environment. However, these types of robots are affected
by unique environmental constraints. For tributary mapping,
UAVs present a distinct advantage, given their ability to
access areas inaccessible to UGVs. The UAVs offer several
benefits over traditional mappingmethods. They can generate
detailed tributary maps in remote or difficult-to-reach areas,
significantly enhancing the scope of environmental monitor-
ing. In addition, when equipped with special sensors, UAVs
can efficiently and accurately capture critical data, such as
water flow patterns, plant health, and soil moisture content.
These capabilities are crucial in agricultural applications,
where precise and timely data are essential for effective
land and water management. Moreover, UAVs facilitate
real-time monitoring and allow rapid responses to changes
in tributary conditions, which are crucial for maintaining
optimal environmental health [6]. Frequent UAV-based
inspections help detect erosion, water pollution, and other
environmental problems early. Such early warnings enable
farmers and landmanagers to implement mitigationmeasures
promptly, preventing minor problems from escalating into
major ones. In these ways, UAV-based tributary mapping
enhances the accessibility and scalability of environmental
monitoring, reducing costs and labor requirements associated
with traditional surveying methods.

However, given the large working environment, it is chal-
lenging to implement effective environmental and ecosystem
monitoring using a single robot. Consequently, multi-robot
system (MRS) has been researched as a viable solution to
increase work efficiency and address the limitations of single-
robot systems [7].Moreover,MRS-based collaboration offers
several advantages, particularly regarding system reliability
and operational efficiency. These systems exhibit flexibility,
allowing them to continue functioning even if a particular
robot fails. Therefore, the overall reliability of MRS is higher
than that of single-robot systems [8]. This characteristic of
MRS addresses a critical limitation of single robots, which is
restricted by operational time.

The MRS can be categorized into two primary types
based on their tasks: strong and weak cooperation [9].
In strong cooperation scenarios, robots directly interact to
accomplish specific tasks that a single robot cannot manage
independently. An example of such tasks is the transportation
of heavy objects, the weights of which exceed the payload
capacity of an individual robot. Multiple robots can collabo-
ratively manage this task by continuously coordinating their
actions, overcoming the limitations imposed by the payload
capacity of a single robot. In contrast, weak cooperation
involves dividing and assigning distinct tasks to individual
robots, allowing for parallel task execution without requiring

direct interaction between the robots. This approach is
beneficial in functions where the independence of the robot
can be maintained while still contributing to a common
objective. By employing the strengths of both types of
cooperation, MRS can be optimized to handle diverse tasks
more efficiently and effectively than single-robot systems.
Therefore, MRS implementation represents a significant
advancement in robotic systems that aprovides a robust
framework for completing complex tasks with enhanced
reliability and operational efficiency. Further research and
development in this area are essential to harness the
potential of MRS fully in diverse applications, ranging from
environmental monitoring to industrial automation.

Although MRS afford significant efficiency advantages in
wide-area environments, several technical challenges remain
unsolved. One challenge is achieving accurate perception
amid environmental constraints, particularly in unstructured,
unknown, and dynamically changing environments [10],
[11]. Aquatic environments—encompassing rivers, seas,
tributaries, and coastal regions–are especially susceptible to
variations in weather conditions, drastically affecting the
operational capabilities of robotic systems [12]. Conven-
tionally, vision-based perception systems have been used
for environmental perception. However, these systems alone
often lack the robustness required for reliable operation in
complex aquatic environments [13]. Changes in illumination,
reflections of surface water, and particulate matter in aquatic
environments can severely degrade the performance of
vision-based sensors. Light detection and ranging (LiDAR)
sensors offer a promising solution to these challenges. LiDAR
sensors offer dense and precise range measurements inde-
pendent of lighting conditions, making them advantageous
for environments with impaired visibility, such as urban or
aquatic settings, where they are increasingly deployed in
mobile robotic applications [14]. The ability of LiDAR to
produce reliable data in various environmental conditions—
ranging from bright sunlight to low-light scenarios–ensures
consistent performance and enhances the robustness of
robotic systems in aquatic environments. Therefore, a new
approach based on LiDAR is needed to develop a perception
system for monitoring aquatic environments.

The other primary challenge related to MRSs is that
the classical control theory based on differential equations
has several limitations in handling large-scale, complex
dynamic systems such as nature monitoring. The scalability,
maintainability, and modularity levels achievable using this
theory are limited (e.g., in scenarios where robots must be
added to perform additional tasks because of environmental
uncertainty or when they are excluded because of commu-
nication errors) [15]. Discrete event systems (DESs) and
formal systematic modeling methods for large-scale dynamic
systems have been applied to overcome this challenge.
Recently, many researchers have demonstrated that the
automata-based supervised control theory (SCT) is efficient
when applied to large-scale dynamic systems under DES
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FIGURE 1. Tributary mapping framework using multiple UAVs for tributary management.

control [16]. However, model uncertainty in unstructured
environments must be overcome to implement the dynamic
behavior of a plant in a DES. Therefore, methods are
needed to overcome the limitations of SCT-based approaches
in DES.

This paper proposes a novel tributary mapping approach
that integrates a surface water mapping system and a hybrid
system combining a DES and a continuous time system
(CTS) with multiple UAVs for tributary management. Fig. 1
depicts the proposed tributary mapping framework for a
multiple UAVs system. The contributions of this work
are as follows. To segment tributary areas, we develop
a perception system that employs LiDAR and is robust
against varying external lighting conditions. This segmented
information is applied for path planning and mapping.
In the proposed control system, CTS-based low-level control
is employed to overcome unstructured, dynamic environ-
ments, and SCT-based high-level models and controllers are
applied to overcome scalability and modularity problems
in large-scale systems. This approach is ideal for large,
unstructured, and unknown environments with complicated
controller design and modeling. We propose a tributary
mapping system combining these perception and control
systems using multiple UAVs. This system can detect objects
floating in tributaries, enhancing agricultural productivity and
conserving natural ecosystems.

II. RELATED WORK
To our knowledge, the literature on tributary management
using UAVs is limited. No existing study has employed
multiple UAVs systems for this purpose. This section presents

a concise overview of themethods for acquiring surface water
data and controlling UAVs for mapping applications.

In tributary mapping, advanced technology, such as high-
resolution cameras [17], [18], multispectral sensors [19],
[20], and LiDAR sensors, are employed to gather detailed
information about water bodies. The existing studies have
focused on single-UAV systems with vision sensors for
capturing surface water data. For example, the authors in [21]
developed a localization and mapping algorithm for riverine
environments. They employed a multiview geometrical
formulation with initial- and current-view projections of
point features from actual objects surrounding the river
and their reflections. The correspondences of these features,
combined with the positional and altitude information of
the UAV, enhanced the observability of the estimation
system. In this approach, visual data were applied to
improve the accuracy of mapping and localization in river
settings. However, the approach depends on the clarity and
quality of the captured reflections. Similarly, in [22], the
authors developed an algorithm to segment water from land
in river environments containing specular reflections and
distinguishable symmetric feature points. They formulated
and solved a graph-based optimization problem using dense
three-dimensional (3D) stereo data and Dijkstra’s algorithm
to determine the water boundary. However, these methods are
constrained by the need for symmetrical shadows reflected
on the water surface, limiting their applicability in more
complex or asymmetrical scenes. Further advancing the field,
the authors of [23] explored various model architectures
(U-Net and DeepLab-V3+) in combination with encoder
backbones (MobileNet-V3, ResNet-50, and EfficientNet-B4)
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to delineate inundated areas under varied environmental
conditions and data availability scenarios. They highlighted
the significant effort required to prepare high-quality training
data, noting that the target domain is influenced by varying
scene and image properties, depending on sensor character-
istics (e.g., radiometry and spatial resolution), atmospheric
conditions, land use/land cover of the background class, and
appearance of the water class. These findings highlight the
complexity of developing robust models that accurately map
water bodies under diverse conditions.

LiDAR sensors have been used extensively in robotics and
environmental monitoring because they deliver dense and
accurate range measurements. These sensors are especially
useful in high-precision data applications, such as generating
precise surface water maps. Moreover, LiDAR sensors pro-
vide reliable data under various environmental conditions that
are challenging for visual and inertial data integration sys-
tems. While effective in controlled or indoor environments,
these systems often struggle with the varying illumination
and dynamic conditions that characterize outdoor settings.
Despite the broad applicability of LiDAR, thus far, its use
in water environments has focused on measuring river water
levels (stages), as in [24] and [25]. These studies underscore
the efficacy of LiDAR in capturing accurate water level data,
which is crucial for flood monitoring and water resource
management. However, the applications of LiDAR extend
beyondmere water level measurements. For example, in [26],
the authors described the complex challenges associated with
applying LiDAR to detect navigable regions. They applied a
customized deep learning network to segment LiDAR point
clouds into bridges, river banks, and plants. They designed
a Kalman-filter-based tracker to track objects on river banks
and compensate for missing parts of river banks. Addition-
ally, they used a wave frontier detection method to model
navigable regions using objects on a river bank. Although
LiDAR for water level measurement is well-documented, its
potential in other aspects of environmental monitoring and
robotic navigation is vast but largely untapped.

The control strategies for UAVs in water-mapping appli-
cations include autonomous navigation systems capable
of real-time data processing and decision-making. These
systems must be robust to environmental variations and
maintain stability and accuracy under diverse weather
conditions. In [27], the authors studied optimal UAV path
planning for coverage search in river areas to maximize the
probability of finding lost targets. Their approach entailed
extracting river subregions using a Gaussian mixture model
based on a probability distribution map and empirically
determining priorities using approximation insertion. The
positive/negative greedy method was applied to fulfill
the terminal time constraints, and the Gaussian mixture
model-approximation insertion method was employed to
generate the optimal search path heuristically under the
constraints. Their study highlighted the importance of using
probabilistic models and heuristic methods to increase the

efficiency of UAV search and coverage missions in riverine
environments. More recently, the authors of [28] proposed
an autonomous coverage path-planning algorithm using deep
reinforcement learning to maximize success rates in a limited
timeframe. In their approach, each unit navigates directly to
the grid with the highest probability in its block using an
environmental map established based on the drift simulation
results obtained at a given time. However, they assumed a
static search environment during path planning, a significant
limitation given the dynamic nature of riverine and aquatic
environments. This assumption can lead to suboptimal
performance in real-world scenarios where environmental
conditions change rapidly.

To the authors’ knowledge, multiple UAVs systems for
water management have not yet been reported in the
literature. In [7], an SCT-based controller was proposed for
swarm UAVs, and the performance of the proposed controller
was verified via an experiment in which a group of UAVs was
clustered using open-source software. In [29], UAV control
was realized using a model predictive control scheme for
precise stabilization during water sampling. Moreover, the
authors of [30] proposed a general system architecture with
onboard vision-based navigation and decision-making for
remote sensing and precision agriculture. In this architec-
ture, the onboard computer running a detection algorithm
transmits the target’s coordinates (local position (x, y, z))
to a Pixhawk device based on the target’s position relative
to the rotation matrix node (x, y) and its height relative to
the ultrasonic node (z). Waypoints are created and driven
in this control architecture. However, this architecture does
not account for complex scenarios, such as creating multiple
goals; therefore, it can create only fragmented situations.

Additionally, to date, SCT-based multiple UAV systems
for ecosystems and natural systems have not been reported
in the literature. Therefore, this research reviews related
studies on formal methods for multirobot control, particularly
SCT. SCT has traditionally been applied to manufacturing
automation [31]; however, its application has recently been
integrated into dynamic cyber-physical robotic systems.
For instance, in [32], the authors implemented SCT in
agricultural UAVs.Moreover, in [33], the authors developed a
control architecture for deploying heterogeneous multirobot
teams in urban search and rescue operations and presented
the results of their experiments. Most studies have used
simple supervisory control based on an automata model
without addressing the challenges of integrating an MRS
with a CTS. Studies that have developed application-focused
DES-based supervisory control and dynamic systems have
not described guaranteed solutions to heterogeneity and
scalability problems nor proposed a systematic approach to
complex dynamic systems. Therefore, additional research
that focuses on approaches beyond the traditional control
methods for field robots is required to control, implement,
and maintain large-scale dynamic systems using DES and
SCT.
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FIGURE 2. Tributary perception flowchart.

FIGURE 3. Side view of UAV path planning and navigation for a tributary: (a) tributary point cloud parameter and (b) spatial constraints with ±θ◦.

III. PERCEPTION SYSTEM
A. LIDAR SEGMENTATION
LiDAR point cloud segmentation spatially groups points
with similar properties into homogeneous regions. Although
surface water typically absorbs the near-infrared beams
emitted by LiDAR, we focus on this characteristic to propose
a novel approach to segmenting surface water in aquatic
environments.

Tributary segmentation based on LiDAR point cloud data
follows the sequence depicted in Fig. 2. A LiDAR point cloud
is a set of points spread out in 3D space. A 3D LiDAR
point cloud is downsampled for efficient processing. After
voxelization, the downsampled 3D LiDAR point cloud is
defined as Pcloud .i = [Px.i,Py.i,Pz.i], where Px,i,Py,i,Pz,i
with the coordinates x, y, z. Then, we established a grid size
of α m and removed any point clouds if their count in a voxel
was below a threshold β for the minimum number of point
clouds required in one voxel. However, the noise-filtered
point cloud still contains obstacles, such as the bushes
around the tributaries. Therefore, we defined a surface water

point cloud to segment the surface water and generate paths
accordingly.

We set specific parameters using the LiDAR point cloud
data, as depicted in Fig. 3, to segment the tributary area, which
is defined as follows:

Ptributary,i

=

{
P̂cloud,i if Pz,i < Pz,lowest + γ and Pz,i < δ

(0, 0, 0) otherwise,
(1)

where the tributary area Ptributary,i is estimated by adding γ m
to the lowest point in the point cloud data Pz.i. In this manner,
the tributary region is defined with the Pz.i values of the point
cloud plus γ m. Additionally, the height of the tributary area
cannot exceed δ m. These parameters are empirical values,
and we assume that the point clouds satisfying these two
conditions represent surfacewater. Then, the tributary regions
are segmented via singular value decomposition (SVD)-
based plane fitting [34] of the filtered point cloud. The SVD
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is a matrix decomposition method that can decompose an
arbitrary m × n-dimensional matrix M , where M is defined
as follows:

M = U6V t , (2)

where U is an mxm-dimensional orthogonal matrix, 6

denotes an mxn-dimensional diagonal matrix, and V T

represents an nxn-dimensional orthogonal transpose matrix.
In addition, U contains left singular vectors, providing
information about the column space of the original matrix.
The diagonal components of 6 represent singular values and
play a crucial role in the SVD of the original matrix. Because
6 is a diagonal matrix, all its off-diagonal elements are
zero. Further, V T contains right singular vectors, providing
information about the row space of the original matrix.
The projection matrix obtained through the SVD is as
follows:

Ptributary,iPTtributary,i = (USV T )(VSTUT )
= USSTUT ,

PTtributary,iPtributary,i = (VSTUT )(USV T )
= UTUSST ,

(3)

where the cross product and inner product of Ptributary,i are
obtained using SVD. The SVD demonstrates the projection of
a 3D vector into a two-dimensional (2D) vector using Eq. (3).

Some point clouds may not be acquired owing to occlusion
caused by external factors (e.g., wiring). Based on the heading
direction of UAV xi, we searched for the drivable area in the
range of±θ◦ within the horizontal view of the LiDAR sensor,
as depicted in Fig. 3(b).

B. NAVIGATION AND SIMULTANEOUS LOCALIZATION AND
MAPPING
Semantic simultaneous localization and mapping (SLAM)
extends the capabilities of traditional SLAMby incorporating
geometric and semantic information, providing detailed
insight into the objects and spaces in an environment.
In tributary perception, a LiDAR-equipped UAV detects
tributaries in a dynamic environment based on the path
generated based on the segmentation results as the control
input. Path planning for UAVs applies the median value of the
tributary area. The median value of a tributary point cloud is
defined as follows:

Pavg =
1
m

m∑
j=0

Pcloud .i, (4)

where m represents the number of segmented point cloud
data. Path planning based on tributary segmentation is
executed in real time, and multiple control inputs are input
indiscriminately. Therefore, the estimated tributary area is
calculated in the range r1 m to ensure a stable search, and the
segmentation range is r2 m, as depicted in Fig. 4. In addition,
stable control inputs are generated using the random sample
consensus (RANSAC) algorithm. A threshold T is defined,

and the points in this threshold are considered inliers. These
inliers form a stable path, whereas the points beyond the
threshold or those identified as duplicates are excluded to
ensure the path is devoid of distant or redundant points. The
probability values used in the RANSAC algorithm are as
follows:

ρ = 1 − (1 − ϵq)Q, (5)

where Q denotes a RANSAC iteration, q represents the
number of samples drawn at one time, ϵ indicates the ratio
of inliers in the input data, and ρ denotes the probability that
a sample is selected from an inlier at least one out ofQ times.
The success of RANSAC relies on drawing sample data
exclusively from inliers in at least one out of Q attempts. The
probability of achieving this success increases asQ increases.
However, the number of iterations is typically determined
probabilistically by considering the practical constraints on
indefinite execution owing to the finite nature of RANSAC
iterations. The number of iterations of RANSAC is expressed
in Eq. (5).

Q =
log(1 − ρ)
log(1 − ϵq)

. (6)

For control inputs, the UAV position is denoted as Pi =

[Ux ,Uy,Uz]. The UAV movement direction is represented
by the vector VP = [x̂i, ŷi], which provides crucial
information guiding the UAV along a specific trajectory. The
proposed system estimates the direction of UAV movement
in 2D space. The components of VP are defined as
follows: {

x̂i = Pavg,x − xi,
ŷi = Pavg,y − yi,

(7)

where Pavg,x and Pavg,y denote the x and y coordinates of VP,
respectively, and VP provides a directional reference based
on the current coordinates of the UAV relative to the average
target position. The distance d from the current UAV position
Pi to VP is calculated using the Euclidean distance formula
derived from the Pythagoras theorem, as depicted in Fig. 4(b)
and defined below:

d =

√
(x̂i)2 + (ŷi)2. (8)

For d > 0: {
x̂i = ˆxi−1/d,

ŷi = ˆyi−1/d,
(9)

where vector normalization is performed to scale the vectors
to fit the moving distance. The UAV’s position is updated,
as defined in the following equation:{

xi+1 = xi + C ·x̂i,
yi+1 = yi + C ·ŷi,

(10)

where C denotes a constant value representing the UAV’s
speed, which can be adjusted by modifying C , helping the
UAV avoid obstacles or move toward a specific point.
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FIGURE 4. Top view of UAV path planning and navigation for tributary: (a) extraction of the average point cloud from spatial constraints of r1 and
r2 and (b) distance calculation.

Over the decades, SLAM has been developed to be
a robotics capability. This study employs fast-LiDAR
odometry and mapping (F-LOAM) [35] owing to its high
computational efficiency and localization accuracy. The
F-LOAM algorithm formulates a sensor model and extracts
features. The extracted features are calibrated via distor-
tion compensation. Then, the general and global feature
extraction results are obtained, and the mapping process and
outcomes of laser odometry calculations are explained. With
noniterative two-step distortion compensation, F-LOAM
facilitates robust, real-time path planning for UAVs at a lower
computational cost than that of traditional LOAM [36].

IV. MULTIPLE UAVS CONTROL SYSTEM
A. SUPERVISORY CONTROL THEORY
This section provides brief overviews of SCT and DES
(see [37] for more details). A DES is a dynamic system
with continuous-time and discrete state space characteristics.
In addition, a DES is an event-driven system whose state is
thoroughly transitioned by eligible events over time. In this
study applies the automata theory as the discrete event
modeling formalism to explain system behavior.

The finite state automatonG for modeling a DES is a tuple
consisting of the following five elements [37]:

G = {Q, ϒ, ζ, q0,Qm}, (11)

where A denotes the set of all states, ϒ represents the set
of all events, ζ is the state transition function of G (ζ :

Q × ϒ∗
7→ Q), a0 indicates the initial state of G, and Qm

denotes the subset of marker states, indicating a goal state or
the final state (Qm ⊂ Q). In the transition function ζ , ϒ∗

represents a sequence (string) of events containing the null
event ε. Moreover, the event set ϒ is divided into a set of
controllable events ϒc and a set of uncontrollable events ϒuc.

The language occurred by the automaton G is defined as
follows:

L(G) := {s ∈ ϒ∗
|ζ (q0, s)!}, (12)

where ζ (a0, s)! indicates that the next state in which string s
occurs at a0 is defined in G. The prefix closure of language
L(G) is defined as follows:

L(G) := {t ∈ ϒ∗
| t ≤ s ∃ s ∈ L(G)}, (13)

where L(G) is defined as prefix-closed when L(G) = L(G).
Themarked language of automatonG is defined as follows:

Lm(G) := {s ∈ L(G) | ζ (a0, s) ∈ Qm} ⊆ L(G), (14)

if G satisfies Lm(G) = L(G), and L(G) is nonblocking. The
marked state can be reached after any string occurs in any
state of G [37]. This nonblocking condition is necessary for
designing a proper supervisor in SCT, because the DES may
fall into a deadlock or livelock when L(G) is blocking.
The supervisor is defined as the automaton S =

(X , ϒ, δ, x0,Xm), whereX , ϒ, δ, x0, andXm represent the sets
of states and events and the state transition function, initial
state, and marker state, respectively. The plant is defined as
DES G, and the behavior, generated language, and marked
language of plantG under supervisor S are defined as follows:

S/G ={X × Q, ϒ, δ × ζ, (x0, a0),Xm × Qm}, (15)

L(S/G) : ϵ ∈ L(S/G), ∀s ∈ ϒ∗,

ϵ ∈ ϒ : s ∈ L(S/G),

sυ ∈ L(G), υ ̸∈ 2 ⇒ sυ ∈ L(S/G), (16)

where υ is an eligible event, and 2 represent a control
mapping function defined as 2 : L(G) 7→ 2ϒc . The
supervisory control problem (SCP) used to design the
supervisor is defined as follows:
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Definition 1: For a given K ⊆ G, find a supremal
language S that is controllable w.r.t. (G, ϒuc), and satisfies
L(S/G) = K and L(S/G) = Lm(S/G).
Thus, if K is defined as the specification for G, the super-

visory control problem is to find a supervisory controller that
satisfying L(S/G) = K = Lm(S/G) and is nonblocking,
and controllable w.r.t. G. In this case, many supervisors may
satisfy the specifications and be controllable. Among theseK ,
the supremal controllable sublanguage of K is identified as
the solution to the supervisory control problem. Therefore, S
can allow for the maximal occurrence of the eligible language
in G.

B. HYBRID SYSTEM OF MULTIPLE UAVS
This section presents a control method for multiple robots
from the perspective of this hybrid system. This approach
allows for integrating continuous control dynamics and
discrete event-driven logic. The proposed hybrid system
is modeled by integrating a CTS with the DES frame-
work. A hybrid automaton was proposed in [38] as a
formal framework for modeling hybrid systems. A hybrid
automaton provides a mathematical structure that repre-
sents the combined continuous and discrete dynamics of
a system, thereby facilitating precise analysis and control
design. We aim to enhance collaboration and coordination
between multiple UAVs in the proposed tributary mapping
system by adopting this hybrid system approach. This
method applies the strengths of both continuous control
and discrete event logic to provide a robust and flexi-
ble framework for managing complex tasks in dynamic
environments.

With the proposed approach, we facilitate collaboration
between field robots by designing a controller for a tributary
mapping system comprising multiple UAVs. At this stage,
we configure a controller based on a hybrid system of
multiple UAVs to achieve this objective. The advantages
of using a hybrid system in multirobot collaboration are
manifold. Integrating continuous-time dynamic-based low-
level models with discrete event-time dynamic-based high-
level models, which define the hybrid system, ensures
overall system performance via a bidirectional interaction.
High-level models, governed by discrete-timed dynamics,
issue commands, such as waypoints or task assignments,
whereas low-level models process these commands based
on continuous-time dynamics and provide real-time state
feedback. This interaction enables control in dynamic
environments by employing the decision-making capabilities
of high-level models and the precise execution of low-
level models. A modular supervisory controller facilitates
decentralized control, allowing dynamic role assignment and
scalable integration of additional UAVs without major archi-
tectural modifications. This approach enhances robustness,
efficiency, and scalability, making it suitable for complex
multiple UAVs systems.

This study explains the concept of a hybrid system
of robots using the following example. Typically, UAVs

incorporate a low-level controller that manages the con-
tinuously tuned dynamics. A typical example of such a
low-level controller is the PID controller. For instance, the
continuous-time aspect of a UAV hybrid system includes
motor control using low-level controllers. The PID controller
continuously adjusts motor speeds for a quadrotor to maintain
stability and achieve the desired flight dynamics. The
high-level control aspect involving DES includes events,
such as power-off triggered by specific conditions, sensor
inputs, or state transitions. A hybrid system combines these
two components, featuring a structure that allows real-time
control based on event triggers that can occur in continuous
time. This integration enables the system to handle complex
scenarios by applying continuous adjustments and discrete
events, providing robust and efficient control over UAV
operations.

The hybrid automaton Gh is a tuple consisting of the
following elements [39]:

Gh = (E,X , �,U ,F, φ, Inv,Guard, ρ,E0,X0), (17)

where E denotes the set of discrete states, X represents the set
of continuous states,� indicates the set of events,U is the set
of admissible controls,F represents the vector field ofGh (F :

E × X × U → X ), φ is the discrete state transition function
of Gh (φ : E × X × � → E), Inv denotes the set defining an
invariant condition (Inv ⊆ E × X ), Guard represents the set
defining a guard condition (Guard ⊆ � × E × X ), ρ is the
reset function (ρ : � × E × X → E × X ), E0 denotes the
initial discrete state and X0 represents the initial continuous
state.

The UAVs are modeled by including high-level (i.e., DES)
and low-level (i.e., CTS) controllers and using kinematic and
dynamic equations. The detailed low-level and high-level
controller design for the hybrid system is discussed in the
following sections.

1) LOW-LEVEL UAV MODELING
Low-level UAV models are formulated using CTS. We con-
sider N low-level UAVs with three degrees of freedom. The
position of each UAV is denoted by pi ∈ R3, where i =

1, 2, . . . ,N . The flight control input of each UAV in terms
of dynamics and kinematics can be expressed as follows:

mip̈i = −τiξie3 + mige3 + hi, (18)

Jiẇi + S(wi)Jiwi = λi + ai, (19)

ξ̇i = ξiS(wi), (20)

where mi > 0 denotes the mass of each UAV, pi :=

[p1; p2; . . . ;N ] ∈ R3 is the Cartesian center-of-mass position
in the north-east-down (NED) inertial frame, τi ∈ R indicates
the thrust control input along e3 (indicating the N, E, and
D directions), ξi denotes the rotational matrix describing the
body frame of the UAV with respect to the inertial frame,
and g represent the gravitational constant. In addition, Ji
denotes the inertia matrix w.r.t. the body frame. Further, wi
represent the angular speed of the UAV relative to the inertial
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FIGURE 5. Plant model: (a) leader UAV model, U i
L , (b) follower UAV model

Un
F , and (c) assign model GA.

frame, and λi ∈ ℜ
3 indicates the attitude torque control input.

Moreover, Hi, ai ∈ ℜ
3 denotes the aerodynamic perturbations

of a typical UAV in flight, where Hi, ai ≈ 0.
The multiple UAVs system is controlled using a

leader-follower formation control strategy suitable for
unstructured environments. Formation control is imple-
mented based on the desired leader-follower distance di,j.
In formation control, the leader and follower are assumed to
know each other’s states and that communication between
them is always maintained. Each robot i, where i =

{1, . . . , n}, can estimate its position pi using a GPS module
and inertial measurement unit (IMU). From pi and pj,
robots can calculate the relative distance li,j = pi − pj.
This leader-follower formation can cope with unstructured
environments by assigning new leaders at a split tributary.

2) HIGH-LEVEL UAV MODELING
High-level UAVs are modeled using DESs (hybrid automata).
In detail, a multiple UAVs system consists of leader, follower,
and assign models, depending on the control strategy,
as illustrated in Fig. 5. The double circles represent marked
states, and the dotted lines represent uncontrollable events.
The proposed hybrid automaton model includes states that
represent different UAV operation modes, such as flying,
hovering, and landing, and transitions between these states
are triggered by discrete events, such as reaching a waypoint
or detecting an obstacle. The low-level PID controllers govern
the continuous dynamics in each state, ensuring responsive
UAV control.

The high-level leader UAVs are modeled as the automata
U i
L . The leader UAV states are defined as U i

L = {U1
L,i,

U2
L,i, U

3
L,i, U

4
L,i}, for i ∈ {1, 2, . . . , n} (where U1

L,i: ideal,

U2
L,i: arming, U3

L,i: hovering, and U4
L,i: performing task).

Each state includes a low-level model that describes the
UAV altitude, hi, velocity vi, and distance between the leader
UAV and a follower UAV, di. For example, we consider
the state set hi, vi, di = 0 of U1

L,1, where di =

0 indicates that the role to be played by this UAV is not
assigned.

The leader UAV model consists of a set of the general
and leader UAV states, where U1

L,i, U
2
L,i, and U3

L,i are
general states (i.e., the set of states before an event start
mission). For example, if an event start mission occurs
in state U3

L,i, this state transitions from the general to
the leader UAV state. At this time, because all UAVs
are in the general state, multiple leader UAVs can be
created, making it possible to conduct searches over split
tributaries.

The high-level follower UAVs are modeled as automata,
whereUn

F represents the UAV states and events. The states of
the follower UAVs are defined as Un

F = {U1
F,n, U

2
F,n, U

3
F,n,

U4
F,n,U

5
F,n}, for n ∈ {1, 2, . . . , k}, in stateU1

F,n (whereU
1
F,n:

ideal, U2
F,n: arming, U3

F,n: hovering, U
4
F,n: following leader

UAV, and U5
F,n: task performing). The follower UAV model

includes the set of general states, leader UAV states, and
follower UAV states.

We included the leader UAV state in the follower UAV
model to ensure that a follower UAV can transition to
being the leader UAV to manage scenarios in which a split
occurs. If the leader UAV detects a split zone during a
mission, a follower UAV transitions to being a leader UAV
to sustain the exploration process. Similarly, if a follower
UAV loses communication with its leader UAV, the follower
is transitioned to being a leader UAV to cover a tributary. For
this reason, the follower UAV model consists of the general
state, follower UAV state, and leader UAV state. The general
state is the state before the assignment of follower UAVs.
The follower UAV states U1

F,n, U
2
F,n, and U

3
F,n represent the

general state, and U4
F,n denotes the follower state. Finally,

U5
F,n represents the leader state.
The assign model states are GA = {UG, UF , UL} (where

UG: general state, UF : follower UAV state, and UL : leader
UAV state). In addition, GA assigns a state to each UAV,
meaning that the state of each UAV is determined as the
general state. The general state is defined as the state
before allocating the leader or follower model to each
UAV.

We can obtain the plant model corresponding to a
high-level UAV model via the following simple synthesis:

Gplant = UL || Un
F || GA. (21)

where Gplant is determined by the number of UAVs initially
consisting of a leader j, followers n ∈ 1, . . . , n, and an assign
model. The plant model can be obtained relatively simply
through this parallel synthesis process, even when UAVs are
added to Gplant .
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TABLE 1. Events and states of each UAV.

C. SUPERVISORY CONTROLLER
To design the supervisory controller, we first design its
specifications (control objectives) and then identify the
supremal controllable sublanguage of the multiple UAVs
system, Gplant . The control objectives corresponding to the
design specifications (S ip) are as follows:

• S1p : Performing mission
• S2p : Navigation
• S3p : Grouping

where S1p implies that the leader UAV moves to a tributary
in the hovering state before the mission, and S2p implies that
the leader UAV can increase its altitude to explore whether
the entire tributary is undetected or path planning is not
achieved during a mission. Finally, S3p denotes the division
of UAVs into groups and subgroups for assigning leaders to
each group and the attempt by a UAV to reorganize if it loses
communication with the leader UAV.

Fig. 6 depicts obtaining the supervisory controller for the
proposed hybrid control system. First, by synthesizing the
plant (Gplant ) and specification (S ip), numerous sublanguages
(Ki) are created, each undergoing a process to check its
property, ultimately deriving a supervisor. The supervisor is
a controllable, supremal sublanguage defined by SCT among
the created sublanguages. A modular supervisory controller
Si is depicted in Fig. 7, corresponding to the obtained Ki that
satisfies controllability. The controller is designed to avoid
conflict to satisfy the control objective. This supervisory
controller controls the system through control actions. For
example, Fig. 7(c) considers the occurrence of events, such
that g1, g5, f1, and a3 respond to states q0, q1, q4, q7, and q11,
respectively. Then, q11 is a deadlock state in which the desired
state cannot be reached regardless of which event occurs.
Therefore, the supervisory controller implements a control
action to ensure system stability by disabling the transition
of event f1 from q7 to q11.

TABLE 2. Hardware specifications.

TABLE 3. Specification of 3D LiDAR.

V. EXPERIMENTAL SETUP
The general architecture of the multiple UAVs system in
the experiments is depicted in Fig. 9. We apply 4G LTE
for multiple UAVs systems because communication delays
can occur depending on the environment. Communication
between UAVs based on a cellular network ensures reli-
able data exchange. This ensures wide coverage, high-
speed transmission, low latency, and stable connectivity
for real-time UAV coordination in dynamic environments.
Middleware built on the robot operating system facilitates
seamless integration and coordination amongUAVs, enabling
real-time computation of critical state information, including
current positions and inter-UAV distances. Additionally,
the architecture is configured with MAVLink to support
lightweight and efficient communication, further enhanc-
ing the ability of the system to manage state infor-
mation and enabling robust and precise multiple UAVs
collaboration.

We employed a UAV platform, specifically a quadcopter,
comprising a carbon-fiber frame integrated with onboard
computers and various sensors, as depicted in Fig. 8
and Table. 2. In unstructured outdoor environments, the
efficacy of visual inertial odometry systems is compromised
due to fluctuating illumination conditions from sunlight
variation. In contrast, 3D LiDAR sensors (Table. 3) offer
superior performance by providing dense and precise range
measurements over long ranges while requiring minimal
computational resources compared with other sensors, such
as high-resolution cameras and multispectral sensors. This
advantage makes LiDAR indispensable for such tasks as
autonomous navigation and precise semantic mapping in
surface water environments. Notably, the platform boasts a
payload capacity (excluding the battery) of 3.5 kg and can
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FIGURE 6. Process of designing the supervisor.

TABLE 4. Results of the perception field test.

be flexibly reconfigured to accommodate additional onboard
computers and mission-specific sensors.

VI. EXPERIMENTAL RESULTS
A. EXPERIMENTAL RESULTS OF THE PERCEPTION SYSTEM
We set the operational parameters as follows. The grid
resolution was established as α = 1 m, and point clouds
were filtered from the grid if their count fell below β = 3.
Additionally, the tributary areas were estimated by adding a
constant γ = 0.5 m to the lowest point in the point cloud
data, and the height of the tributary area did not exceed δ =

1 m. The calculated tributary area was bound in the range
r1 = 20 m. Moreover, the segmentation area was confined
in the variable range of r2 = 10 m. Finally, using the UAV’s
heading point as a reference, we searched drivable regions of
the angular range of ±θ = 4◦.
Experiments were executed in two canal environments

at various lighting conditions. The first environment was
assessed on a sunny morning (Fig. 10(a)), and the second
environment was evaluated during challenging conditions,
characterized by backlighting during a cloudy evening
(Fig. 10(b)). From the semantic SLAM result map, we can
generate a surface water map in real time, which is
represented by the green plane, and can classify floating
objects on the surface water as obstacles, indicated in red.
As summarized in Table. 4, the width and height of both
environments are 7.1 m and 3.1 m, respectively. In addition,
the length of the environment is about 300 m and 600 m,
respectively. Errors occur in the presence of obstacles such
as bushes or sharp curves on the water surface, but the overall
average error is close to the ground truth. This adaptability is
crucial for addressing the diverse canal widths in agricultural

environments. Moreover, the performance of the proposed
system under various lighting conditions with strong sunlight
and backlighting highlights its robustness in less-illuminated
scenarios, ensuring consistent mapping capabilities even in
suboptimal weather conditions.

The results demonstrate that the proposed LiDAR-based
system effectively enables real-time mapping and navigation
in complex agricultural environments. The system allows
for real-time detection and monitoring of blockages or
obstructions in water flow by identifying floating objects.
Additionally, the system displays the potential for flood and
drought preparedness by accurately measuring the width and
height of waterways. Its ability to address variable lighting
conditions and accurately detect obstacles on the water
surface highlights its robustness and reliability, making it a
practical solution for precision agriculture and surface water
management.

B. EXPERIMENTAL RESULTS OF THE CONTROL SYSTEM
The approach of simulating virtual environments to replicate
the physical environment and assess system performance
under controlled conditions has been widely applied,
as demonstrated in [40]. This approach effectively identifies
and mitigates potential problems before real-world imple-
mentation. Therefore, in this study, physics-based simula-
tions were formulated to validate the proposed supervisory
controller for a multiple UAVs-based tributary mapping
system. This system comprises three UAVs, and the virtual
environment was modeled to include real split tributaries
(Fig. 11). The systemwas fully implemented in CoppeliaSim,
a robot simulator. The state and event transitions of the
multiple UAVs were received and recorded using the
CTS-to-DES interfaces in MATLAB and CoppeliaSim.

The experiment was conducted considering the following
scenarios. We focused on tributaries divided into three
to evaluate the control performance of the MRS. This
experiment focused on verifying the supervisory controller;
therefore, tributary recognition was not performed. To this
end, a predefined path was set for each UAV. These
predefined paths were transmitted to the leader UAV. Upon
receiving the trajectory, the leader UAV commenced its
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FIGURE 7. Synthesized modular supervisor according to specification: (a) modular supervisor 1 (S1),
(b) modular supervisor 2 (S2), and (c) modular supervisor 3 (S3).

path-following task and mapped the tributaries. The super-
visory controller, designed based on the three established

control goals, coordinated the movements and interactions of
the UAVs.
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FIGURE 8. Hardware configuration.

FIGURE 9. Proposed system architecture.

A limitation of this scenario is that the supervisory con-
troller cannot independently identify branching points along
tributaries. An experiment was conducted assuming that the
separation points of the tributaries were known a priori to
address this limitation. According to the experimental results,
the leader UAV moved along the tributary and encountered
a branching point. A specific event (l8) was triggered upon
reaching a predetermined splitting point. Per the predesigned
S3p , the UAVs were divided into new groups by a supervisor,
ensuring that the control specifications of each group were
met. The follower UAVs mapped tributaries by responding to
the branching points that occurred when an event triggered
the assignment of a new leader. The results, illustrated in the
accompanying figure, were evaluated based on events and
state transitions over time, confirming that the behavior of
the multiple UAVs system was consistent with the specified
behavioral requirements.

C. EXPERIMENTAL RESULTS OF THE INTEGRATED SYSTEM
These experimental scenarios were employed to assess
whether the MRS could successfully perform mapping
in an unknown environment while meeting the design
specifications. This experiment evaluated the performance
of the proposed perception system and the designed super-
visory controller. The computational complexity of the
controller used in a traditional differential equation-based
MRS increases rapidly as the number of robots increases.
We tested and verified the scalability of the proposed system
in three cases to address this scalability problem:

• Case 1: single UAV,

• Case 2: three UAVs, and
• Case 3: eight UAVs.
Figs. 12-14 depict the experimental results. The tributary

perception and SLAM performance of the system were
evaluated based on the UAV’s trajectories. Perception and
SLAM were performed independently by the leader carrying
out the mission, and the follower responded to scenarios
involving a split tributary.

The performance of the supervisory controller and scal-
ability of the proposed hybrid system were evaluated
regarding the time-varying state transitions and event strings.
Experiments were conducted with different numbers of
UAVs to demonstrate that the system based on the proposed
method has adequate scalability. The entire plant model
can be obtained easily via additional simple synthetic
calculations and controlled using the designed supervisor.
As the number of UAVs increases, the state space, events,
and transitions of the overall plant increase exponentially.
Case 1 (single UAV) consists of 5 states, 20 events, and
23 transitions; Case 2 (three UAVs) has 13 states, 23 events,
and 67 transitions; and Case 3 (eight UAVs) expands
to 8,125 states, 23 events, and 42,185 transitions. This
exponential growth in the state space increases computational
complexity; however, the proposed supervisory controller,
implemented via a physics simulation, demonstrates suffi-
cient scalability. Using a modular supervisor for decentral-
ized control efficiently adapts to varying cases, reducing
computational complexity and highlighting its scalability in
large-scale MRSs.

Based on each case of the entire plant, the computational
complexity of the proposed multiple UAVs system was
analyzed based on its leader-follower control strategy.
In this system, only the leader UAV performs path planning
and SLAM algorithms in a 2D grid framework with a
computational complexity of O(n2). The follower UAVs are
limited to tracking the leader without performing additional
computations. The modular supervisory controller enables
decentralized control by dynamically assigning roles based
on environmental conditions. Thus, the overall computational
complexity of the system is expressed as O(n2 · m),
where m represents the number of leader UAVs. This
approach highlights the system’s structural efficiency and
scalability.

Fig. 12 depicts the results of Experimental Case 1.
In Case 1, the system could not cope with a split tributary;
therefore, only the main tributary was selected and mapped.
At this time, a single UAV could not cover the split zone, and
consequently, it explored only one tributary. Fig. 13 presents
the results for Case 2, where the leader and followers were
assigned before the split occurred at l1. At split Zone 1, the
leader UAV (UAV1) detected two tributaries l8. Then, the
closest UAV among the followers was selected and assigned
as the leader, l1. Next, UAV1 moved to a narrow tributary
and restarted its mission l3 and l1. Similarly, the new leader
(UAV2) detected the second split tributary. Its mission was
restarted at this point, and UAV3 was assigned as the leader
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FIGURE 10. Evaluation of tributary perception system: experimental results for (a) a sunny day and (b) a cloudy evening with backlighting. The first
layer illustrates the obstacles A and B of the tributary in a real environment. The middle layer provides a detailed surface water map. The final layer
presents the tributary map achieved through simultaneous localization and mapping, allowing us to detect obstacles floating on the surface water.

FIGURE 11. Experimental environment designed using a robot simulator
similar to the actual environment.

UAV. Finally, in Case 3, as illustrated in Fig. 14, the multiple
UAVs system achieved the behavior specifications despite the
increase in the number of UAVs.

VII. DISCUSSION
This study did not include an assessment of the points at
which tributaries branch in the tributary recognition system.
In simulations, the divergence points were known before-
hand, allowing for their identification. However, recognizing
these divergence points is crucial in an entirely unknown
environment. Future studies should focus on developing and
integrating methods for real-time identification of tributary
branching points to enhance the applicability of the system
in real-world scenarios. Additionally, improving the accuracy
and resolution of the mapping data further supports the
effective navigation and mapping of complex river systems.

A simulation environment that rigorously mimics
real-world conditions has been developed to facilitate field
experiments in actual environments. However, because not
all real-world variables can be accounted for in a simulation,
uncontrollable factors may be encountered when the system
is applied to real-world scenarios. For instance, power lines

may be present around the tributary environment, requiring
the system to navigate around them. Moreover, the system
must be able to respond to unexpected incidents, such as bird
strikes. Furthermore, ensuring reliable energy consumption
management for the UAV in the field is essential. Although
a fully autonomous tributary mapping system has yet to
be realized, we anticipate that the proposed system can be
improved via ongoing field tests.

LiDAR sensors are susceptible to noise from environ-
mental conditions such as rain, fog, and dust, which can
introduce random errors in distance measurements. These
disturbances can lead to point cloud anomalies, affecting
the accuracy and fidelity of the generated maps. Potential
errors or uncertainties in LiDAR data caused by sensor noise,
reflections, or occlusions can be mitigated via preprocessing
in the SLAM stage, using various techniques, such as
statistical outlier removal and sensor fusion (e.g., with IMU)
to ensure high-quality inputs for mapping and planning. For
path planning, RANSAC enhances robustness by filtering
out outliers and isolating valid inliers, even in challenging
conditions, such as partial occlusions or highly reflective
surfaces. If combined with an initial noise-filtering step
before applying RANSAC, it can be expected to minimize
the influence of LiDAR data uncertainties, ensuring accurate
and reliable path generation in unstructured environments.

Furthermore, the proposed hybrid system-based tributary
mapping approach is scalable depending on application
requirements. It can be extended beyond homogeneous robots
to include heterogeneous robots, making it suitable for
applications in various domains beyond water management.
For example, a representative method in water management
involves sampling: UAVs conduct remote sensing from the
air, whereas UGVs and unmanned surface vehicles collect
more detailed local information. Moreover, this method can
be adapted to agricultural tasks, where UAVs gather data
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FIGURE 12. Experimental results for a single UAV: (a) trajectory and (b) event and transitions.

FIGURE 13. Experimental results for three UAVs: (a) trajectories and (b) event and transitions.

FIGURE 14. Experimental results for eight UAVs: (a) trajectories and (b) event and transitions.

for yield prediction models from the air, and UGVs perform
localized tasks. These expansions highlight the versatility and
potential of the proposed system in diverse applications.

VIII. CONCLUSION
This paper presents a hybrid system employing multiple-
UAVs for effective monitoring in nature. The designed
tributary mapping framework integrates perception and
control components. The perception system employs 3D
LiDAR semantic segmentation to recognize surface water,

exploiting the water-absorbing properties of LiDAR to define
a water point cloud and segment surface water areas via
SVD. Paths are created using RANSAC by determining
the center points of these segmented areas. Each UAV
is modeled with a continuous-time dynamic-based low-
level model and a discrete event-time dynamic-based high-
level model. We devised the desired plant behavior by
addressing the control objectives and developed a corre-
sponding supervisory controller. The effectiveness of the
tributary mapping system, including perception accuracy and
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path generation, and the hybrid system-based supervisory
controller was validated via a physics-based robot simulator.
The experimental results demonstrate that the limitations
of a single-UAV system can be overcome by expanding
to a multiple-UAVs approach, improving robustness across
lighting conditions via a LiDAR-based perception system.
Compared with single-UAV systems, the proposed system
reduces exploration time by nearly 50%, addressing the chal-
lenge of limited flight duration due to a restrictedUAVbattery
life. This approach reveals significant potential for effectively
managing complex, unstructured natural environments and
demonstrates substantial potential for managing complex,
unstructured natural environments.
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