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3D LiDAR-Based Semantic SLAM for Intelligent
Irrigation Using UAV

Jeonghyeon Pak

Abstract—Ensuring water use and food security is essential due
to the growing world population and global warming. Agriculture is
the largest consumer of freshwater, and attention has been focused
on improving water-use efficiency in irrigated agriculture. We
propose 3-D light detection and ranging (LiDAR)-based semantic
simultaneous localization and mapping using unmanned aerial
vehicles (UAVSs) for intelligent irrigation. The proposed system uses
the water-absorbing property of LiDAR to define a water point
cloud and segment the surface water area based on singular value
decomposition. A path is created using random sample consensus
as the median point of the divided surface water area. By extracting
the width and height information from the surrounding point cloud,
the system aids in proactive natural disaster prevention and has
potential applications for Big Data. The performance and practical
utility of the proposed system were demonstrated via field data
using a UAV and 3-D LiDAR. The robustness of the proposed
system is verified by experiments in two irrigation environments
with different surface water widths and temporal conditions.

Index Terms—3-D light detection and ranging (LiDAR),
intelligent irrigation, semantic segmentation, simultaneous
localization and mapping (SLAM), unmanned aerial vehicle
(UAV).

1. INTRODUCTION

ATER is vital for ensuring food security for the world
population, and agriculture is the largest consumer by
far, consuming about 70% of the freshwater. Improving surface
water management at the irrigation district level (see Fig. 1)
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requires multiple actions and significant resources. Surface wa-
ter monitoring is fundamental to improving district irrigation
management. Monitoring provides information on space and
time concerning delivery and demand regarding water quantity
and irrigation and drainage concerning water quality. Monitor-
ing identifies the infrastructure, operation bottlenecks, health,
and environmental risks [1] and provides indispensable insight.
Efficient surface water management is a critical element for
sustainable agriculture.

Robotic applications in the agriculture sector and sustainable
agricultural practices have surged [2]. Recently, unmanned aerial
vehicles (UAVs) have gained increasing prominence driven by
their feasibility and flexible deployment capabilities [3], [4].
Various UAV applications include water bathymetry [5], ma-
rine resource exploration [6], floating waste removal [7], and
surface water monitoring [8], meeting demands from scien-
tific, environmental, and agricultural communities. Implement-
ing optimal operational plans informed by monitoring systems
facilitates improved surface water management in irrigation
districts, reducing labor, and applying irrigation scheduling
plans [9].

For surface water monitoring, UAVs must perceive the en-
vironment. The perception of the environment requires apply-
ing various sensors, including UAV status sensors, such as a
global positioning system (GPS) and inertial measurement units
(IMU), and environmental perception sensors (e.g., cameras,
radars, lasers, etc.). Due to its intuitiveness and effectiveness,
the camera is widely employed as a passive perception sensor in
obstacle and river line detection, wave information perception,
stereo vision reconstruction, and other applications. However,
cameras are not robust enough to illuminate unstructured and
unknown external environments. Light detection and ranging
(LiDAR) technology is the primary approach to acquiring 3-D
spatial information, providing rapid access to highly precise
surface information, and is robust to external lighting conditions.
Compared to image-based detection, LiDAR provides reliable
depth information that can be applied to localize objects and
characterize their shapes accurately.

For autonomous navigation of irrigation UAVs, perception
and real-time localization performance are critical to the in-
telligent irrigation monitoring system. From the perspective of
macroscale path planning, the perception of the environment is
primarily to grid and discretize the overall space and perform
optimal path planning. However, to the best of our knowledge,
no UAV-based perception and path planning system has used
LiDAR focused on agricultural irrigation monitoring.

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
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Fig. 1.

To fill this gap and research UAVs, we integrate seman-
tic segmentation with simultaneous localization and mapping
(SLAM) and navigation in agricultural irrigation. The primary
contributions of this article are 1) a proposal for UAV-based
intelligent irrigation with semantic SLAM, 2) developing a 3-D
LiDAR-based water perception system robust to outdoor condi-
tions, and 3) an evaluation in a natural irrigation environment.
This article aims to recognize the requirements and challenges of
UAVs for irrigation and introduce 3-D LiDAR perception, water
segmentation, and SLAM. This work presents benchmarks and
evaluates perception algorithms for the tasks.

The rest of this article is organized as follows. Section II
surveys the related work. Then, Section III presents an intelligent
irrigation system. Next, Section IV discusses the results and
analysis of the real-world experiments. Section V details the
central problems. Finally, Section VI concludes this article.

II. RELATED WORK

A. Surface Water Monitoring in Intelligent Irrigation

According to [10], an intelligent irrigation system for a paddy
combines monitoring, automatic control, and cloud-based sys-
tems in an Internet of Things framework. The integration reduces
the workload of the farmers and improves irrigation efficiency
by performing remote or automatic irrigation operations. The
monitoring includes a range of information, from data on ir-
rigation surface water (contamination and waste distribution)
to data on irrigation fields, such as the water level [11], water
demand [12], and weather conditions [13]. Among intelligent
irrigation systems, surface water monitoring is an essential

(@

Agricultural irrigation environments: (a)—(d) different types of irrigation settings in agriculture.

and fundamental task. However, surface water monitoring in
irrigation environments has rarely been studied.

Satellite images [14], [15] and vision sensors [16], [17] are
classic methods of surface water detection that have been used
for many years. However, in outdoor environments, these meth-
ods encounter challenges, such as limited resolution, sensitivity
to varying illumination (e.g., direct sunlight, shadows), and
difficulties in GPS-denied environments. Recent research has
explored using LiDAR sensors to address these limitations. For
example, Kim et al. [18] introduced LiDAR to improve the
reliability of detecting navigable regions. The LiDAR approach
ensures consistent and accurate mapping and navigation across
diverse weather and lighting conditions typical in outdoor envi-
ronments. Furthermore, LiDAR generates dense and precise 3-D
point clouds, allowing for a detailed and reliable terrain repre-
sentation including irrigation canals, plants, and other relevant
obstacles. Further in [19] and [20], the researchers developed
robust systems for outdoor environments using multispectral
LiDAR. In the context of intelligent irrigation and the specific
tasks addressed in this article, LIDAR-based SLAM was selected
due to its robustness and reliability in addressing the challenges
of outdoor agricultural environments.

With the need for LiDAR in environmental perception and
localization, the unique characteristics of LiDAR, including
its resilience to external environmental factors and reflection
of water surfaces, are applied in this work. The LiDAR-
based SLAM approach is employed to achieve the following
monitoring objectives: 1) providing consistent performance re-
gardless of lighting, 2) accurately modeling irrigation canals
and their surrounding environments with precise 3-D data, and
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3) enabling higher-accuracy field tasks (e.g., canal design and
management, real-time navigation, and obstacle avoidance).
This work proposes a novel segmentation approach to identi-
fying irrigation areas precisely, exploiting the water-absorbing
properties of LiDAR. This innovation addresses the gap in
surface water monitoring in irrigation environments, enabling
more accurate, and efficient intelligent irrigation systems.

B. UAV-Based Sensing and Perception

In modern agriculture, UAV s have become indispensable, cat-
alyzing a transformative shift in the agricultural landscape. Their
multifaceted applications in agricultural settings, as exemplified
in the literature, [21], [22], [23], underscore their pivotal role
in providing farmers with invaluable insight. This paradigm
shift toward UAVs represents a critical advancement, offering
real-time data to optimize irrigation practices and assess the
surrounding environment.

Integrating advanced perception techniques, notably semantic
segmentation, marks a significant development in agricultural
robotics. This integration enables UAVSs to capture real-time data
and interpret and comprehend the agricultural landscape at a se-
mantic level. This interpretative capacity lays the foundation for
implementing targeted irrigation strategies, illustrating effective
synergy between robotics and precision agriculture.

The practical application of semantic segmentation in pre-
cision agriculture is noteworthy. Studies [24], [25], [26] have
found utility in identifying specific crop or object types, and this
capability facilitates targeted irrigation strategies, allowing for
more efficient resource allocation based on the distinct needs
of crops or objects. A dynamic and adaptive landscape charac-
terizes the evolution of UAV-based sensing and perception. As
UAVs continue to advance the potential for improved agricul-
tural practices increases. The ongoing research and development
in this domain emphasizes the adaptability of UAVs, making
them versatile tools for acquiring data, monitoring crops, and
enhancing overall agricultural efficiency.

C. Semantic Segmentation and SLAM

Semantic segmentation divides each basic data unit (e.g., an
image pixel or point in a point cloud) into regions with specific
semantic categories. Segmentation methods for point clouds
can be divided into approaches based on classical computer
vision and artificial intelligence (AI). The pioneering basis of
the Al-based approach is PointNet [27], which learns per-point
features via the shared multilayer perceptron followed by sym-
metrical pooling functions to work on unordered data. Many
studies have been proposed based on PointNet. Following the
pointwise multilayer perceptron idea, PointNet++ [28] groups
points hierarchically and learns from the larger local regions.
However, Al-based approaches may not be generalizable due
to their high computational costs and limited predictions from
trained data in new situations.

In classical computer vision approaches, singular value de-
composition (SVD) [29] is a powerful linear algebra technique
that defines the geometric structure of a matrix, a critical aspect
of many matrix calculations. A matrix can be considered a
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transformation from one vector space to another. The compo-
nents of the SVD quantify the resulting change between the
underlying geometry of these vector spaces. The SVD has been
employed in various applications, from least squares problems
to solving systems of linear equations. Each of these applications
exploits the critical properties of the SVD, which are its relation
to the rank of a matrix and its ability to approximate matrices of
a given rank. Many fundamental aspects of linear algebra rely on
determining the rank of a matrix, making the SVD an essential
and widely used technique.

In robotics, SLAM is the problem of mapping an unknown
environment while estimating the robot pose [30]. Reliable
navigation, object manipulation, autonomous surveillance, and
many other tasks require accurate knowledge of the robot pose
and surrounding environment. Traditional approaches to SLAM
rely on low-level geometric features, such as corners, lines, and
surface patches, to reconstruct the metric 3-D structure of a scene
but are primarily unable to infer semantic content. Semantic
SLAM combines geometric and semantic information to under-
stand the environment enabling robots to interact and navigate
intelligently. Ding et al. [31] predicted the broad application of
semantic SLAM in agricultural environments due to the rapid
development of semantic SLAM.

III. SEMANTIC SLAM AND NAVIGATION

Semantic segmentation and SLAM are topics in robotics, with
considerable scientific work covered by several comprehensive
articles [32], [33]. This study focuses on related work for se-
mantic SLAM based on unstructured and unknown irrigation
environments. The concept of segmenting the reflected surface
water from LiDAR and taking the median value of the segmented
surface as the control input is presented. Moreover, UAVs can
map irrigation surface water along a given path to identify
changes in irrigated areas or contaminants on the surface water.
This section identifies problems related to irrigation surface
water and explains them by dividing them into LiDAR segmen-
tation, navigation, and SLAM.

A widespread natural phenomenon is a series of flows in
oceans, reservoirs, rivers, and streams to irrigate a paddy. Surface
water contamination continues to occur due to human negligence
and natural phenomena, and these problems disrupt the water
flow. The problem of surface water contamination extends to
irrigation. Contamination of surface water for irrigation can lead
to mental and physical stress for farmers due to reduced crop
yields, crop death, soil erosion, and poor soil quality. Fig. 2
classifies these problems. The most common situations are a
small amount of bush growth [see Fig. 2(a)] and considerable
bush growth [see Fig. 2(b)]. When the water flow is blocked,
accumulating water, the surface water becomes covered with
algae, as illustrated in Fig. 2(c). When the water supply is
insufficient or rainfall is below average due to external factors,
a drought occurs, as depicted in Fig. 2(d). Before forecasting
inflow and water demand, research should be conducted to
monitor surface water for irrigation.

The LiDAR point cloud segmentation aims to group points
with similar properties spatially into homogeneous regions. In
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Fig. 2.

2-1. Downsampling and Noise filtering

Peiouai = [vai'Py-i' Pz-i] € VJ i€ {1'2' " k}
Setup a am grid,
5 Paouar  EFEY>1 jE(12,..0
cloud,i 0 otherwise Water environment

2-2. Extract point clouds of water

Psurface water,i =
Petoua,i if P, < Priowest v and P; <&
(0,0,0) otherwise

2-3. Singular value decomposition
n r r n

1. Original raw data

White outlines mark various problems in agricultural surface water for irrigation. (a) Bushes. (b) Numerous bushes. (c) Algae. (d) Drought.

5. Simultaneous localization
and mapping (SLAM)

4-1. Center of water point clouds

1 w
Petoud.avg () =1, Z Peioua.i
i=0

4. Path planning using center point

4-2. RANSAC

m | |Psurfacewateri| = | U —

2. Plan fitting
using singular value decomposition

Psurface water.i = UZVT

Fig. 3. Flowchart of semantic SLAM with 3-D LiDAR point cloud data.

this study, LiDAR segmentation is performed using the data
from actual surface water for irrigation. Before segmentation,
the near-infrared LiDAR beams are absorbed by water. Super-
ficially, this is a limitation of LiDAR. However, we propose a
new approach that focuses on this point.

A. LiDAR Segmentation

Irrigation surface water segmentation using a LiDAR point
cloud follows the sequence in Fig. 3. A LiDAR point cloud refers
to several points dispersed in the 3-D space. The LiDAR point

D = [Peioud.avg,» Petoud.avgy *** » Petoud.avgy]

p=1-(1-eN?

4-3. Orientation of UAV
i =2q/d; i =Pia/d

3. Extract of +6 4-4. Position of UAV

Xip =X +C- %

Yisr =Yi+C- 9

cloud follows the LiDAR local coordinate system, defined with
the sensor origin at the center, where all points are referenced
relative to the position and orientation of the sensor. A 3-D
LiDAR point cloud is defined as follows:

Puaowdi = [Peiy Py, Pod)t, i€ {1,2,....k} ()

where Fgjoud,; represents the ¢ th point in the LiIDAR point cloud,
where ¢ ranges from 1 to k, and k denotes the total number of
points in the point cloud. In addition, P, ;, P, ;, P, ; is described
with coordinates x,y, z. Further, Fou,; is downsampled to
process the LiDAR point cloud data efficiently. Voxelization
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Fig. 4. 3-D point cloud voxelization.

is performed in 3-D space for downsampling, as presented in
Fig. 4. The unit voxel is defined as follows:

Vi =vD - oW -vH 2)

where vD denotes the unit voxel of depth, vV represents the
unit voxel of width, and vH indicates the unit voxel of height.
Moreover,vD,vW ,and vH are setto an o m. After voxelization,
the downsampled 3-D LiDAR point cloud is defined as follows:

) Paoai iff(V))=1, je{1,2,...,1
Pcloud,i :{ cloud, ! f( J) J 6{ } (3)

0 otherwise

where f(V;) represents a step function, which is a 3-D unit and
is indexed by j. The range for 5 depends on the total number of
voxels generated during voxelization. The value of [ depends on
the dimensions of the 3-D space and the size of the unit voxel. A
step function is an activation function whose output changes
based on the threshold. If Pcloudﬂ- satisfies the step function,
the value of Foud,; 1S stored; otherwise, the value of Feoud,s
is discarded. In addition, f(V;) is defined as follows:

1 if numberof P; > 3
0 otherwise

(V) = { 4
where P; denotes the number of LiDAR point clouds in one
voxel as a set of LIDAR point clouds belonging to V

Py = {(=5,y5,2) (x5, 95, 25) € Vj}. (5)

If P; is less than 3, which is the threshold for the minimum
number of point clouds in one voxel, the point clouds are
removed from the voxel. Removing noise in low point cloud
density areas can exclude unnecessary point clouds. The point
cloud noise filtered by (4) and (5) retains data on many obstacles,
such as bushes and trees, which are essential to determine in
irrigated environments. Then, the filtered point cloud is stored
in cloud,i -
Irrigation surface water point clouds are defined as follows:

P surfacewater, s
o Pcloud,i if Pz.,i < Pztlowesl + Y and Pz,i <46
(0,0,0) otherwise

(6)
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where the P, jowes Value of the point cloud is the lowest point or
the smallest value in the P, ; value of the point cloud. Further, v
represents the value from the ground to P, jowes, and d denotes
the value from the ground to the bottom of a canal. As depicted
in Fig. 5(a), irrigation surface water is estimated to be within
the P, ; value of the point cloud plus v m at the lowest point.
In addition, it is also estimated that the height of the irrigation
surface water cannot exceed ) m. These parameters are empirical
values.

The areas are segmented using SVD-based plane fitting [34]
of the filtered irrigation surface water point clouds. Plane fit-
ting is performed using the lowest points in the point cloud
at the irrigation canals. This approach ensures that the fitting
surface accurately models the irrigation canals, independent of
the presence of floating objects. Segmented obstacles, including
floating objects, are not included in the plane fitting calculations
during this real-time process. Segmentation is applied after the
fitting surface is established to differentiate between the surface
water and floating objects. This sequential processing ensures
that floating objects do not influence the plane fitting results,
maintaining the accuracy of the fitted surface. However, the
plane fitting and segmentation are executed almost simultane-
ously in real time, ensuring seamless integration, and efficiency
in system operations.

The SVD projects the 3-D point cloud onto a 2-D vector space,
analyzes the resulting rectangular matrix, and visualizes the
diagonal matrix or orthogonal vectors derived from the SVD.
Moreover, SVD is a matrix decomposition method that can
decompose an arbitrary m x n-dimensional matrix Pyyrfacewater,i»
where Piyrfacewater,i 18 defined as follows:

Psurfacewater,i = UEVT (7)

where U denotes an orthogonal matrix of mXx m dimensions,
> indicates an diagonal matrix of mx n dimensions, and VT
represents an orthogonal transpose matrix of nx n dimensions.
Moreover, m represents the number of downsampled and ex-
tracted 3-D LiDAR point clouds, and n represents the number
of features associated with each LiDAR point. Further, U con-
tains the left singular vectors, providing information about the
column space of the original matrix. The diagonal components
of X represent singular values and play an important role in
the SVD of the original matrix. As it is a diagonal matrix, all
off-diagonal elements are zero. The matrix V7' contains the right
singular vectors, providing information about the row space of
the original matrix. The projection matrix using the SVD of the
matrix is as follows:

T TrrT T
Psurfacewater,iPsu,—facewateni =VX'U'uxv )

=vVE's)u” ®)
Psz;rfacewateryiPsurfacewater,i = (UEVTVETUT)
=uExh)ut ©)

where the cross and inner products of Piyfacewater,i Use SVD,
which demonstrates the projection of a 3-D vector onto a 2-D
vector.



7500

¥

y(m

Pz.lowest

%

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

£ 5(m)

r

(a)

.

.,

(b)

Fig. 5.
with £6°.

The surface water and floating objects are segmented based
on their spatial relationship with Pyyrfacewater,i- The surface water
is represented by Pyyrfacewater,i and modeled using a fitting plane
via SVD. Objects floating above the fitted plane are identified as
obstacles. These floating obstacles are determined by employing
the lowest point of the LIDAR sensor measurements, which are
closest to the surface water. This feature enables the algorithm
to be effective in agricultural environments, where real-time
updates are crucial for precision monitoring and surface water
management.

The 3-D LiDAR mounted on a UAV has a 360° horizontal
view. Some point clouds may not be acquired due to occlusion
from external factors (e.g., wiring). The occlusion causes low
segmentation accuracy; therefore, based on the heading direction
of the UAV, x;, we search for a drivable area in the range of +6°

N

~

Path planning and navigation of UAV for intelligent irrigation from a side view. (a) Parameter of irrigation surface water point cloud. (b) Spatial constraints

in the horizontal view of the LIDAR [see Fig. 5(b)]. For a stable
search, the segmentation range is limited to 71 m, as depicted in
Fig. 6(a).

B. Navigation and SLAM

The estimated irrigation surface water is calculated in
Section ITI-A using semantic segmentation, and the UAV path
is planned using the median value of the segmented area. The
average of the median point cloud is defined as follows:

1«
Pcloud,avg(t) = E Z Pcloud,i (10)
=0

where w denotes the total number of points classified as irriga-
tion surface water. Using previously classified irrigation surface
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Fig. 6.
r9. (b) The calculated distance.

water as Pcloud,i, this work can find the median of the irrigation
surface water by taking the average of pcloud,i- Path planning
based on the segmentation of surface water for irrigation is
executed in real time, and multiple control inputs are entered
indiscriminately. Therefore, for a stable search, the median range
is limited to 75 m [see Fig. 6(a)]. In addition, stable control
inputs are generated based on the random sample consensus
(RANSACQC), a robust method for fitting a model that satisfies the

Path planning and navigation of UAV for intelligent irrigation from a top view. (a) Average point cloud extracted from the spatial constraints of r1 and

original data without limitations on model type when original
outliers exist. The method is performed by iteratively examining
the space of model parameters to maximize or minimize some
result function. The set (10) is defined as follows:

Y

where Proud,avg i sorted based on the temporal order, with
Proud,ave,, representing the latest instance. The condition

D= [-Pcloud,avg1 ) Pcloud,anga cee 7P010ud,avgN]
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Pooud,avgy > Peloud,avg, , 18 enforced, establishing an order in
the sequence. A threshold 7" is defined, and points below this
threshold are considered inliers. These inliers form a stable path,
whereas points beyond the threshold or identified as duplicates
are excluded, ensuring the path remains free from distant or
redundant points. The probability values in the RANSAC algo-
rithm are as follows:

p=1—(1—-€)? (12)

where () denotes the iterations of RANSAC, ¢ represents the
number of samples drawn at one time, ¢ signifies the ratio of
inliers among the input data, and p indicates the probability
that a sample is from an inlier at least one out of () times. The
success of RANSAC relies on drawing sample data exclusively
from inliers in at least one out of () attempts. The probability of
achieving this success rises with an increase in ). However, due
to the finite nature of RANSAC iterations, the number of repe-
titions is typically determined probabilistically, acknowledging
the practical constraints on indefinite execution.

The UAV position is defined as P; = [x;,y;, 2;] to provide
control input to the UAV. The movement direction of the UAV
is defined as follows:

13)

where 2;andy; indicate the orientation of the UAV and are rep-
resented by O; = [4;, §;, ;] with coordinates z, y, and z. This
vector provides crucial information for guiding the UAV along a
specific trajectory. In this system, the direction of movement is
estimated in the 2-D space. The components of V' P are defined
as follows:

VP = [fia gz]

(14)
s5)

Ty = Pcloud,avg,:c — T
Yi = Pcloud,avg,y — Y

where Proud,avg, and Peioud,avg,y are the x and y coordinates of
vector (10), respectively. The distance can be calculated using
the Pythagorean theorem as follows:

a= @7+ )
As depicted in Fig. 6(b), the distance from P; t0 Fjoud.ave Can
be calculated using the distance equation. For d > 0

G =di1/d

(16)

a7
9i = 9i—1/d (18)
where the vectors are normalized to scale them to fit the moving
distance. The UAV position update is defined as follows:

19)
(20)

Tip1 =2+ O3y

Yit1 = Yi + C-0;

where C' denotes a constant value, the moving speed of the UAV.

The speed can be altered by adjusting C, which can help the

UAV move toward a specific point. Finally, the irrigation surface

water is segmented, and the paths are generated based on the
segmented areas.

Over the decades, SLAM has been developed as a robotic

capability. This article employs fast LIDAR odometry and map-
ping (F-LOAM) [35] due to its high computational efficiency and
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Companion board %

Fig. 7. Hardware setup of the UAV-based intelligent irrigation system.

localization accuracy. The algorithm formulates a sensor model
and performs feature extraction. The extracted features are
calibrated using distortion compensation. Then, the algorithm
presents the general and global feature extraction results and
explains the mapping process and results of the laser odometry
calculations. Through noniterative two-step distortion compen-
sation, F-LOAM can realize robust, real-time path planning for a
UAV at a lower computational cost than traditional LOAM [36].
The algorithm achieves a real-time performance of up to 20 Hz
on low-power embedded computing units.

IV. FIELD EXPERIMENTS

This section presents the field evaluation of the manageability
of irrigation surface water in the proposed intelligent irrigation
system at two sites. This section is divided into two parts: the
setup and description of the hardware and environment for the
field experiment and the experimental results.

A. Experimental Setup

The UAV platform, F660, was built for the experiments with
a carbon fiber frame equipped with onboard computers and
sensors (see Fig. 7). Cameras are inexpensive, lightweight, and
have high update rates. However, in unstructured outdoor envi-
ronments, varying illumination in sunlight is challenging for any
visual-inertial odometry system. Exposure must be constantly
adjusted, which is detrimental to many algorithms that track
visual features because this violates the constant brightness
assumption.

In contrast, 3-D LiDAR sensors can have dense and accurate
range measurements of up to several hundred meters while re-
quiring negligible computation compared to stereo- or multiview
depth estimation (see Table I). These sensors are also robust
to environments with direct sunlight and varying illumination.
These advantages make LiDAR indispensable for autonomous
navigation and accurate semantic mapping in irrigation envi-
ronments. The platform has a payload capacity (excluding the
battery) of 3.5 kg and can be reconfigured to carry additional
onboard computers and other mission-specific sensors. The
proposed system segments the surface water using only LiDAR
point clouds and creates a path combining the IMU sensor of
the flight controller.
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Fig. 8. Irrigation environment. (a) A wide canal on a cloudy evening with backlighting. (b) A narrow canal on a sunny day.
TABLE I
SPECIFICATIONS FOR 3-D LIDAR
Velodyne VLP-16 Specification
Channel 16
Measurement range up to 100 m
Accuracy 4 3 cm (typical)

Field of view (vertical) 30° (+15° to -15°)
Field of view (horizontal/azimuth) 360°
Angular resolution (vertical) 2°
Angular resolution (horizontal/azimuth) 0.1 to 0.4°
Rotation rate 5 to 20 Hz

To enable real-time processing, the platform uses a high-
performance Jetson AGX Xavier onboard computer. This com-
puting module features a 512-core Volta GPU with tensor cores,
an 8-core ARM v8.2 64-bit CPU with 8 MB L2 and 4 MB
L3 cache, and 32 GB of 256-bit LPDDR4x memory with a
bandwidth of 137 GB/s. These specifications ensure efficient
and reliable operation for real-time environmental perception
and navigation.

Oryecheon (Orye stream), a tributary of the Yeongsan River,
supplies water for agriculture to nearby farmland. If bushes and
pollution block the water flow of the Oryecheon, it could damage
human life and property in this town. We identified the water flow
moving from the wide canal (Oryecheon) [see Fig. 8(a)] through
the narrow canal [see Fig. 8(b)] to the paddy. In most irrigation
environments, the irrigation canal may be impeded by surround-
ing vegetation and may contain some floating matter. In addition,
because identification is conducted in an outdoor environment,
it must be robust to lighting conditions and shadows. Therefore,
we constructed two experimental environments for surface water
segmentation and path planning: a wide canal on a cloudy
evening with backlighting and a narrow canal on a sunny day.
Table II presents the parameters to segment the irrigation surface
water, which were determined via an iterative trial-and-error
process. The system was designed to allow adjustments to these

TABLE II
SYSTEM PARAMETERS
Parameters Units

e 1 (m)

B 3 (points)
v 0.5 (m)

1 1 (m)

0 4 ©)
r1 20  (m)
T2 10 (m)

T 0.5 (m)

Q 1000  (times)
q 50  (times)
C 1

settings, ensuring adaptability to various environmental scales.
Furthermore, we evaluated the segmentation accuracy using
% Zf;l(lOO - % -100). Where N represents the total
number of data, GT; denotes the ground truth value (either width
or height) for the tth data, RT; is the corresponding real-time
measured width or height.

B. Experimental Results

The proposed system was field evaluated in two environments
at various times for an irrigation canal with various specifica-
tions.

1) Environment 1: Wide Canal on a Cloudy Evening With
Backlighting: System performance was evaluated in the first
experimental setting characterized by a wider irrigation sur-
face canal and cloudy evening conditions with backlight [see
Fig. 9(a)]. In the semantic SLAM result map in Fig. 10(a), a
surface water map can be generated in real-time with a green
plane, and floating objects on the surface water are classified as
obstacles and appear in red. As shown in Table III, the width
and height of Environment 1 are 7.1 and 3.1 m, respectively,
with the ground truth values obtained using a measuring tape. In
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0 min

5 min 1 min

10 min 2 min

15 min 3 min

20 min
(a)

Fig. 9. Irrigation surface water perception results over time: (a) Environment 1 and (b) Environment 2. White lines represent the trajectory of the UAV operated
by the controller. Blue lines mark the path generated based on segmented irrigation surface water using RANSAC. All processing and generation occurred in
real time. Irrigation surface water is mapped in green, whereas the irrigation water area segmented from the irrigation surface water map is marked in gray. The
gray area is generated ahead of the blue line and may not be visible due to rapid updates because it quickly overlaps with the green map. The surface water map
segmentation and the path are updated in real-time; hence, minor oversights may occur during the capture process, particularly in areas of rapid transition.



PAK AND SON: 3-D LIDAR-BASED SEMANTIC SLAM FOR INTELLIGENT IRRIGATION USING UAV

(b)

Fig. 10.

7505

Irrigation monitoring map: (a) Environment 1 and (b) Environment 2. On the left, A and B correspond to features in the map to the right. The left

illustrates a real environment with floating objects, whereas the right depicts real-time mapping of the irrigation surface water using the proposed system. On the
right the green area represents irrigation surface water, and the red in the green area indicates floating objects.

TABLE III
RESULTS OF FIELD TEST

Ground truth

Average results

Errors

Environment 1~ Environment 2 Environment 1  Environment 2 Environment 1  Environment 2
Width 7.1  (m) 4 (m) 7.84  (m) 424 (m) 0.74  (m) 024  (m)
Height 3.1 (m) 1.8 (m) 321  (m) 1.74  (m) 0.11  (m) -0.06  (m)

addition, Environment 1 has a length of 600 m. Although not the
primary focus of this study, in Fig. 11(a), the system compares
results at 10 m intervals to enhance the accuracy of the width
and height measurements. The evaluation indicated an average
width error of 0.74 m and an average height error of 0.11 m,
in which the real-time segmentation accuracy values are 76%

and 47%, respectively. The mapped irrigation surface and trends
in the graph may not align perfectly due to the complexities
of the data extraction process. In addition, extracting precise
values at each time step is challenging and may be influenced
by UAV movement disturbances, curved paths, or recognition
errors caused by the surrounding terrain features. Despite these
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Average width and height: (a) side and top view in Environment 1 and (b) side and top view in Environment 2. The experimental environments have

lengths of 600 and 270 m, respectively. Due to external influences, such as wind, maintaining a constant speed for UAVs can be challenging. Therefore, errors can
occur due to the strong shaking caused by external influences, sharp curves, or floating objects on the surface water.

challenges, this work verifies that the overall error remains
minimal compared to the ground truth. This finding suggests
that the proposed system is progressing toward closer alignment
with the ground truth.

System performance in cloudy evening conditions with back-
lighting highlights the robustness of this approach in less-
illuminated scenarios, ensuring consistent mapping capabilities
even during suboptimal weather conditions. These results un-
derscore the adaptability of the system to varying environmen-
tal conditions, demonstrating its capacity to generate real-time
maps in more comprehensive and potentially less-illuminated
settings. The observed differences in width and height errors
between the two environments emphasize the need for a robust
system to account for diverse scenarios. In addition, the observed
differences in width and height errors underscore the ability of
the system to handle diverse environmental conditions, position-
ing it as a reliable and comprehensive monitoring solution for
irrigation surface water.

2) Environment2: Narrow Canal on a Sunny Day: Real-time
experiments were conducted to create a detailed map of irri-
gation canals and floating objects in the second experimental
environment characterized by a narrow irrigation surface canal
and sunny weather conditions [see Fig. 9(b)]. In the semantic
SLAM result map in Fig. 10(b), risks can be eliminated by
identifying factors impeding the water flow in real time. As
presented in Table III, the width and height of Environment 2
are 4 and 1.8 m, respectively. In addition, Environment 2 has a
length of 270 m. In Fig. 11(b), the results revealed an average
width error of 0.24 m and an average height error of —0.06 m,
where the real-time segmentation accuracy values are 53% and
92%, respectively. The negative height error suggests a slight
underestimation of the height measurement, whereas the width
error indicates a relatively accurate width estimation. This accu-
racy is crucial for navigating narrow canals, providing farmers
with detailed information for efficient irrigation management. In

addition, the capability of the system to create real-time maps in
sunny conditions underscores its reliability in well-illuminated
environments, ensuring consistent performance during optimal
weather conditions.

Differences were identified between the irrigation surface
water in satellite images and on-site conditions. This observation
highlights the importance of real-time, on-the-ground monitor-
ing because satellite images may not fully capture the dynamic
nature of the irrigation environment. Real-time on-site monitor-
ing provides detailed and precise data to optimize agricultural
harvesting and resource management, even under unexpected
natural disasters. For example, during drought conditions, the
absence of surface water leads to the canal bed being detected
as an obstacle in the LiDAR point cloud due to reflections
from the dry ground. This capability allows the system to
adapt dynamically, marking potential blockages and enabling
effective path planning in water-free scenarios. The proposed
system highlights the critical role of real-time monitoring in
ensuring accurate environmental recognition, facilitating robust
agricultural management, and improving resource allocation
strategies.

V. DISCUSSION

The outcome of this research has immense potential for
integration into smart agriculture and agricultural Big Data
frameworks. The intelligent surface water perception system
can enhance water management in agricultural settings. This
system allows efficient surface water monitoring to understand
water flow in real time and quickly respond to unexpected
situations. In addition, accurate distribution of water to crops
can be predicted, and irrigation methods can be optimized in
response to natural disasters. The acquired data can be inte-
grated into agricultural Big Data frameworks, offering valuable
insight into objects floating on the surface water and water flow
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patterns, enabling data-driven decision-making for sustainable
and precise agricultural practices.

In considering the potential applications and advancements of
the proposed system, although this article focuses on the percep-
tion aspects of the intelligent surface water perception system,
we recognize the significance of extending these capabilities to
address real-world challenges, such as avoiding electrical lines
in irrigation environments. Including such obstacle avoidance
in future testing can enhance the adaptability and safety of
the system. This aspect becomes relevant in scenarios, where
the deployment of UAVs involves maneuvering through intricate
landscapes, including agricultural fields with electrical lines.

While the proposed system demonstrates promising results
in irrigation surface water perception and path planning, con-
tinuous refinement, and enhancement in LiDAR segmentation
are imperative. Improvements in segmentation accuracy in-
crease accuracy in the surface water area and path planning.
Future studies can focus on optimizing perception algorithms to
achieve higher accuracy and reliability in distinguishing surface
water from the surrounding environment. In addition, extensive
testing across diverse scenarios can be conducted to enhance
system robustness further. For example, this study did not con-
sider fully dried environments, as the irrigation system operates
by opening and closing canals based on agricultural demands,
and field workers indicate that completely dry canals are rare
during operation. However, future research may experiment with
drought conditions to contribute to the development of a more
adaptable and robust irrigation management framework. This
continuous improvement solidifies its adaptability, positioning it
to enhance its utility for various applications, including environ-
mental monitoring, urban planning, infrastructure management,
resource management, and disaster response.

This research lays the foundation for expanding the applica-
tion of intelligent surface water perception systems to a multi-
UAV context. This scalability is pivotal in efficiently covering
larger geographical areas. Implementing a multi-UAV system
enhances the overall monitoring capabilities, allowing for simul-
taneous coverage of multiple water bodies or areas of interest.
Furthermore, integrating branch selection processes into the
mapping system allows UAVs to navigate complex irrigation
networks dynamically. This expansion contributes to developing
a comprehensive and adaptable framework, offering possibili-
ties for collaborative and synchronized efforts in environmental
monitoring and water management on a broader scale.

VI. CONCLUSION

We propose a LiDAR-based semantic SLAM system in in-
telligent irrigation. A LiDAR-equipped UAV system effectively
detects irrigation surface water in dynamic scenarios and prints
control inputs derived from the segmentation results. The pro-
posed system extends beyond the real-time applications, offer-
ing the potential to create landscapes resilient to unexpected
situations. We demonstrated the robustness of the system to the
outdoor environment in two scenarios. Field evaluations were
conducted at various times in irrigation canals with various
specifications.
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The experiment produced a map depicting irrigation canals
and floating objects in real time. Furthermore, in one environ-
ment where the surface water width was 7.1 m and height was
3.1 m, the average width error was 0.74 m, and the average
height error was 0.11 m. In the other environment, where the
irrigation surface water width was 4 m and height was 1.8 m,
the average width error was 0.24 m, and the average height error
was —0.06 m. This article sets the stage for its seamless inte-
gration into real-world applications, contributing to the broader
landscape of smart agriculture and precision farming.
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