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ABSTRACT This study proposes an isotemporal task allocation system for autonomous tractor vehicles to
improve agricultural task efficiency. The proposed system integrates Voronoi-based workspace partitioning
and isotemporal task allocation. The method performs isotemporal tasks by considering the performance
and state (including distance, velocity, and fuel and battery capacity) of each tractor by adopting an optimal
workspace partitioning method. Based on these factors, the system optimizes the sub-workspace allocation
to minimize the task time deviation and ensure balanced workload distribution among heterogeneous robots.
The proposed system is evaluated through numerical verification and field evaluation in an agricultural
environment. The results of the field evaluation show that the task efficiency is significantly improved, such
as a 25.88% reduction in total task time and a 92.89% reduction in task time deviation under optimized
conditions. In addition, the similar results of the two evaluations indicate high consistency and performance
maintenance of the proposed system performance. Through the proposed system, it can be easily applied
to various tractor-based vehicle cooperative task models, and efficient task performance can be expected by
reducing idle time and allowing tractors to perform the next task.

INDEX TERMS Agricultural robot, isotemporal task allocation, Voronoi diagram, workspace partitioning.

I. INTRODUCTION

Automation of agricultural systems is critical to improving
productivity and ensuring sustainable food production. The
introduction of autonomous tractors plays a key role in
the advancement of agricultural system automation [1]. The
autonomous tractors can perform various agricultural tasks
without human intervention, which significantly improves
operational efficiency, driver safety, and labor costs compared
to manual tractors [2]. By integrating advanced Global
Navigation Satellite System (GNSS)-based navigation sys-
tems, Al-based task scheduling, and precision agriculture
technologies, autonomous tractors can perform field task
with sub-centimeter accuracy, reducing input waste and
improving crop yield efficiency [3], [4], [5]. Additionally,
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the rapid development of Al, the Internet of Things (IoT),
and autonomous control systems has further accelerated the
commercialization of these technologies, and major agri-
cultural machinery manufacturers are implementing robust
sensor networks, real-time kinematic (RTK) positioning,
and machine learning-based adaptive control strategies [6].
Using real-time data analytics and adaptive multi-agent
task allocation algorithms, autonomous tractors can dynam-
ically adjust operating parameters based on soil conditions,
crop growth stages, and environmental variables, creat-
ing a more sustainable and resource-efficient agricultural
ecosystem [7].

The autonomous tractor fleet system that collaborates
with multiple tractors is an efficient agricultural automa-
tion system that intelligently distributes tasks among
tractors to further improve farm productivity and yield.
The system applies advanced control algorithms, real-time
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communication networks, and sensor fusion to optimize
operations and ensure efficient task execution. References [§]
and [9] dynamically allocated tasks and coordinated opera-
tions between tractors through fleet technology to improve
resource utilization, minimize overlapping task, and enhance
farm productivity and yield. In addition, by integrating
real-time data analysis and adaptive autonomous driving
strategies, the tractor system can dynamically adapt to chang-
ing field conditions, improve decision-making, and improve
operational efficiency [10]. This approach improves the
accuracy of task execution and ensures strong adaptability to
various terrain and crop conditions. This autonomous tractor
fleet system contributes to the development of sustainable
agricultural automation by optimizing fuel consumption,
reducing emissions, and supporting precision agriculture
technologies such as variable use of fertilizers and pesticides.

Extensive research on autonomous tractor vehicle technol-
ogy has been conducted in the field of agricultural robots.
Agricultural robotics research has been conducted in the
context of heterogeneous swarm robot systems [11], [12].
Multi-robot task allocation (MRTA), Multi-robot path plan-
ning (MAPP), and cooperative control are required for swarm
robot systems [13], [14]. For example, MRTA dynamically
distributes work loads based on tractor performance, task pri-
orities, and environmental conditions to avoid inefficiencies
due to idle or overload. Path planning plans appropriate paths
for tractors considering the dynamic structure of tractors,
optimization of task time, etc. during agricultural task [15],
[16]. Cooperative control enables multiple tractors to task
cooperatively toward a common goal through advanced
control algorithms and real-time communication systems,
enabling synchronized movement and efficient achievement
of common goals. A common approach in cooperative control
is the leader-follower technique, where one or more tractors
act as leaders and guide the movements of the follower
tractors to ensure coordinated and efficient operation [17],
[18]. The integration of these technologies is essential to
improve the scalability and efficiency of autonomous farming
systems.

In agricultural environments, optimal workload distri-
bution directly affects vehicle efficiency, scalability, and
overall field productivity by mitigating tractor overload and
task time [19]. In addition, the improved workload alloca-
tion technique enhances agricultural machinery utilization
through intelligent distribution strategies including optimized
full-field coverage through computationally efficient path
planning, adaptive workspace allocation based on field
topography and soil heterogeneity, and energy-saving strate-
gies [12], [20]. These methods ensure balanced workload
distribution, minimize operational delays, and improve over-
all system throughput. The task allocation framework, which
integrates mixed-integer linear programming (MILP) [21],
heuristic-based optimization [22], and dynamic reallocation
strategies, enables autonomous tractor vehicles to dynami-
cally adapt to real-time environmental changes, unexpected
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disturbances, and operational uncertainties. Enhanced task
allocation algorithms and optimization techniques create a
scalable and robust foundation for autonomous tractor fleet
systems to meet the evolving needs of modern precision
agriculture.

In agricultural operations using autonomous tractor fleet,
inherent differences in tractor performance and operating
conditions (e.g., engine power, fuel economy, payload, initial
position, mechanical reliability) pose significant challenges
to achieving optimal efficiency. These differences can
lead to imbalances in operational capabilities, complicating
effective management of the overall operation. Furthermore,
operational challenges are further exacerbated by external
environmental factors such as soil conditions, crop maturity
stages, and rapidly changing weather patterns common
in agricultural environments. To address these challenges,
an adaptive task allocation mechanism that utilizes accu-
rate data analysis and allocation strategies to distribute
appropriate tasks based on tractor performance and environ-
mental conditions is essential. In addition, this strategy can
mitigate workload imbalances, ensuring optimal utilization
of high-performance tractors and preventing overloading
of low-performance tractors. Such solutions can signifi-
cantly improve synchronization between tractors, improve
resource utilization, and maximize vehicle productivity and
efficiency.

As mentioned earlier, to effectively address these chal-
lenges, a differential workspace partitioning task allocation
system that optimizes the workspace allocation of individual
tractors is essential. This system distributes the workload
by considering the specific performance and current state of
each tractor (e.g. engine power, fuel capacity, initial position),
minimizing idle time, and ensuring balanced workload
distribution across the vehicle. Furthermore, integrating
this task allocation mechanism with autonomous systems
allows for dynamic adjustments based on environmental
conditions and operational feedback, effectively responding
to unexpected obstacles, terrain changes, or task delays. This
approach maximizes operational efficiency and improves
vehicle-wide collaboration, enabling a scalable and robust
autonomous tractor fleet system to address the challenges of
modern agricultural environments.

This paper proposes a Voronoi-based isotemporal task
allocation system to improve the operational efficiency
of autonomous tractor fleet in agricultural environments.
The proposed method combines Voronoi-based task space
partitioning with an isotemporal allocation strategy to assign
differentiated tasks that reflect the tractor’s performance and
state. This task allocation approach maximizes workload
balance and overall efficiency through isotemporal task allo-
cation that minimizes task completion times. The proposed
method demonstrates its feasibility and applicability through
numerical validation and field experiments in real agricultural
environments, demonstrating both theoretical validity and
practical applicability.
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A. RELATED WORKS

1) AUTONOMOUS TRACTOR FLEET

In agriculture, researchers have developed multi-robot agri-
cultural tractors (or vehicles) to reduce total work time
and increase work efficiency [8]. Furthermore, a leader-
follower system was developed to improve work efficiency
for multi-robot tractor systems [23], [24], [25], [26]. [27]
developed a team of robotic tractors to harvest peat moss.
In this system, three robot tractors worked in three fields, and
a human operator remotely commanded and monitored the
robots. An agricultural multi-robot system (MRS) is similar
to the sweep coverage robot system [28], [29], [30], [31], both
of which must cover a large area in a minimum time. Recent
advances have incorporated machine learning, computer
vision, and communication technology, such as vehicle-
to-vehicle (V2V) and vehicle-to-network (V2N) systems,
to enhance adaptability, real-time coordination, and task
optimization in dynamic environments. These innovations
enable scalable, resource-efficient, and environmentally
sustainable solutions for modern agricultural practices.
However, in environments with limited communication, the
risk of a robot leaving the communication zone and losing
contact with other robots increases, resulting in duplicate
task assignments, unnecessary exploration, and significantly
increasing the overall task completion time.

2) MULTI-ROBOT TASK ALLOCATION

To effectively address these challenges, it is crucial to
understand and optimize the fundamental problems of MRTA
in complex environments [32]. In applying an autonomous
tractor fleet to agricultural tasks, MRTA should be performed
to distribute each task to the robots. MRTA optimally allo-
cates a task set to a robot team to optimize the overall system
performance subject to a set of constraints [33]. Several
MRTA studies have proposed distributed approaches to
address scalability issues and cooperative game theory [34].
Among these, market-based methods [35] utilize auction-like
negotiation techniques and have proven successful in various
domains [36]. Reference [32] conducted a study to optimize
task execution time for spatially distributed and non-atomic
tasks through a task allocation and scheduling model that
allocates tasks considering a limited communication environ-
ment where robots rely on partial information. Graph neural
networks have also been used for distributed multi-robot goal
allocation [37]. These MRTAs often do not directly reflect
the physical location relationship between robots and tasks.
This can result in robots located far apart unnecessarily taking
on distant tasks, which can increase travel distances and
delay task start times. Furthermore, because task distribution
considers the entire robot-task combination, computational
complexity increases rapidly as the problem size increases.

3) VORONOI-BASED MRTA
The Voronoi diagram partitions an area according to arandom
point closest to the center. Voronoi diagrams are commonly
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employed to allocate multi-robot paths or workspaces, and
studies have been conducted on this topic [38], [39], [40].
A limited central Voronoi tessellation for approximations
of the surface to be covered has been proposed [41]. This
approach considerably reduces the probability of being
trapped in the local optima, which is far from the globally
optimal solution. The number of iterations of measurements
and calculations required for the algorithm to converge is
also lower. This advantage can be significant for the success
of missions in complex environments where unpiloted aerial
vehicles (UAVs) with limited energy are deployed. A cover-
age control algorithm for a group of network robots achieving
discrete Voronoi coverage in surface mesh is presented [42].
The algorithm approximates the Voronoi region with a
mesh cell to minimize the cost of the entire Voronoi
configuration, reallocating the cell locally to the adjacent
region. The experimental results, such as convergence rate,
local minimum of the lane, final configuration cost, and initial
configuration, were analyzed on scales. Previous studies
have proposed MRTA algorithms tailored for homogeneous
and heterogeneous agricultural MRSs, using Voronoi-based
methods for workspace partitioning and task allocation [43],
[44]. However, a remaining critical limitation is that the
resulting area partitioning is not optimally balanced or
dynamically adaptable. The existing approaches often neglect
essential operational constraints, such as energy consumption
thresholds and temporal limitations, which are critical for
guaranteeing robust and scalable MRTA implementations.
Consequently, the current task allocation methods are
limited in maximizing task efficiency while ensuring an
equitable workload distribution across heterogeneous robotic
systems [45], [46], [47].

B. CONTRIBUTIONS AND NOVELTY
The contributions and novelty of this study are summarized
as follows:

1) The proposed isotemporal task allocation system
is designed to allocate Voronoi-based partitioned
workspaces for autonomous tractor fleets, minimizing
idle time and balancing workload distributions.

2) The workspace partitioning that allocates sub-
workspaces for each tractor is considered based on the
performance and state of the tractors.

3) The isotemporal allocation that optimizes workspaces
allocated on each tractor is allocated by reducing the
overall task time and equalizing workloads.

4) A numerical validation and field evaluation verify the
scalability, adaptability, and efficiency of the proposed
system.

Il. PROBLEM DESCRIPTION

In agricultural operation scenarios, the completion time of
agricultural robotic vehicles is a critical factor, which is
usually expressed as task execution time [48]. The workload
distribution of each robot should be considered to ensure a
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Command center

Task allocation

Y

Sensing

Workspace

FIGURE 1. Task allocation system for autonomous tractor fleet: A camera-equipped UAV detects the workspace and calculates and allocates a suitable

sub-workspace to each tractor.

workload distribution that is as balanced as possible to avoid
robot overload or excessive idleness [19] due to performance
variability of vehicles and unpredictable environmental
conditions. Differences in engine power, fuel efficiency,
payload capacity, and initial positioning significantly influ-
ence tractor performance, leading to uneven task completion
times, resource underutilization, and operational challenges.
Traditional task allocation methods often fail to address
these variations adequately, resulting in productivity losses
and suboptimal fleet performance. Thus, MRTA strategies
become essential to mitigating these problems, ensuring that
tasks are optimally allocated to match the capabilities and
state of each vehicle.

To effectively address these challenges, tasks must be
allocated by explicitly considering the performance and state
variability of heterogeneous tractors. In a previous study [43],
[44], we has extensively explored various MRTA techniques,
focusing predominantly on spatial allocation methods such as
Voronoi-based workspace partitioning (Fig. 1). Such methods
leverage the Voronoi algorithm to partition workspaces,
enabling MRS to receive distinct workspaces. This approach
allows for dynamic allocation by incorporating robot-specific
performance metrics and operational states. By assigning
weighted values to each robot based on its capabilities such as
distance from initial position, velocity, and battery capacity
the method achieves differentiated partitioning, ensuring
that each robot is allocated a task region proportional to
its efficiency and capacity. However, these methods fail
to account for how factors such as distance from the
initial position, velocity, and battery capacity influence task
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duration, leading to suboptimal task allocation that does not
guarantee the most efficient workspace distribution.

Therefore, an optimization process that explicitly con-
siders the effect of these factors on the task completion
time is necessary to achieve a more precise and effective
allocation strategy. Incorporating critical influencing factors,
including distance, velocity, and battery capacity, is crucial
to achieve this result in workspace partitioning. In this
study, we considered three key performance and state
factors—distance, velocity, and battery capacity—to model
task completion times. This task was performed on flat,
unpaved terrain and assumed a path plan that followed
the work nodes. The tractor’s turning radius was set to a
semi-circle with a diameter of 1m, based on the distance
between the task nodes. Furthermore, we assumed that the
tractor would recharge and re-enter the field after exhausting
its battery capacity, thereby verifying the effectiveness of
continuous charging. The allocation of workspaces considers
the duration of simultaneous tasks, leading to efficient,
equitable, and adaptive workspace partitions responsive to
real-time operational data and environmental conditions. This
synchronized approach enhances the scalability, adaptability,
and overall operational efficiency of autonomous tractor
fleets, providing a suitable, robust solution for dynamic
agricultural environments.

Ill. VORONOI-BASED ISOTEMPORAL TASK ALLOCATION

SYSTEM
This section presents the proposed task allocation system,

integrating adaptive workspace partitioning and isotemporal
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FIGURE 2. Flow chart of the proposed task allocation system.

optimization to enhance scalability, adaptability, and effi-
ciency in multi-robot task execution. The isotemporal task
allocation strategy ensures synchronized task completion
across heterogeneous autonomous tractors by incorporating
k-means clustering for the initial task grouping, weighted
Voronoi diagrams for workspace partitioning, and isotempo-
ral optimization techniques to adjust workload distributions
dynamically. The proposed method accounts for variations
in tractor performance metrics, including velocity, energy
consumption, and payload capacity, ensuring that each tractor
is allocated an optimized workspace based on its capabilities.
Fig. 2 illustrates the process flow of the Voronoi-based
isotemporal task allocation system, detailing the steps
involved in node map generation, workspace partitioning, and
isotemporal optimization.

A. NODE MAP GENERATION

Accurately mapping the agricultural environment is a
fundamental requirement for precise task allocation and
workspace partitioning in autonomous tractor systems. Thus,
UAV-based photogrammetry was adopted as computationally
efficient approach for workspace mapping to mitigate
these constraints [49]. Using UAV equipped with mapping
camera, ensuring comprehensive field coverage with minimal
operational cost.

As shown in Fig. 3, the mapping process begins with
aerial sensing to detect and classify task-relevant areas.
The collected spatial data are processed to extract task
points, which are discretized as individual nodes in the

166016

Task point

Convert

FIGURE 3. Generation a sensing image based node map using UAV with
camera.

workspace. Each task point is systematically converted into
a corresponding node on the generated node map, capturing
spatial dependencies and functional constraints for efficient
task execution. This structured workspace representation
provides the foundation for isotemporal task allocation by
incorporating terrain topology, crop distribution, and field
accessibility constraints. Integrating UAV-based mapping
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FIGURE 4. Node clustering using k-means clustering algorithm: (a) Initial centroid placed in an arbitrary space close to the entrance, (b) Calculation

process until the center point of the sub-workplace no longer changes.

accelerates initial data acquisition and enhances the scalabil-
ity and adaptability of task allocation methods, supporting
the deployment of autonomous tractors in large-scale and
dynamically changing agricultural environments. This map-
ping pipeline forms a critical component of the proposed
system, enabling optimized and context-aware workspace
partitioning for autonomous field operations.

B. WORKSPACE PARTITIONING
1) NODE CLUSTERING
The first step in workspace partitioning involves node
clustering, identifying the central points for partitioning
the workspace using a Voronoi diagram. This process
establishes cluster centroids to allocate workspace among
k autonomous tractors. The initial cluster centroids are
strategically placed near the current positions of the tractors
to enhance the efficiency and effectiveness of task allocation.
This approach minimizes initial travel distances, reduces
energy consumption, and optimizes resource utilization. The
k-means clustering algorithm, a well-established and compu-
tationally efficient method for partitioning high-dimensional
data, is employed due to its effectiveness proven over several
decades in clustering tasks [50].

The total set of task-relevant nodes is denoted as R, =
xi, (i = 1,2,...,n), representing spatially distributed task
points in workspace R. Given R, the algorithm partitions
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these nodes into C = ¢, (j = 1,2, ..., k) clusters, where
each cluster ¢; has a centroid denoted by ;. The objective of
k-means clustering is to minimize the total within-cluster sum
of squared errors (SSE), defined as the squared Euclidean
distance between each node x; and its corresponding cluster
centroid p;, as formulated in Eq. 1:

k
SSE(C)= > > |xi — wl?

Jj=1 x;C;

ey

where k represents the number of autonomous tractors for the
agricultural task. The k-means clustering algorithm proceeds
through a structured iterative process, as illustrated in Fig. 4.
First, an initial centroid /ﬁ is randomly selected for each
cluster, serving as the initial cluster center point p.. near the
entrance. Second, all nodes are allocated to the nearest pc..
Third, the updated position of each p.. is calculated based
on the centroid for all allocated nodes in the cluster. Finally,
this process is repeated for N times or until convergence,
defined as the point where no further change in any p..
occurs, as formulated in Eq. 2:

w+n _ 1

J

2 %

N
x,‘ECj( )

By systematically clustering task nodes R, into k
groups, the system derives optimal cluster centroids for
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Voronoi-based workspace allocation. Combined with strate-
gic centroid initialization near tractors, this approach
ensures balanced workloads, minimizes tractor idle time,
and enhances task execution efficiency. Consequently, the
proposed clustering method supports scalable and adaptive
workspace partitioning, facilitating robust and -efficient
operations in dynamic agricultural environments.

2) VORONOI-BASED PARTITIONING

The second step for workspace partitioning is the
Voronoi-based partitioning process, which partitions areas
based on p... The Voronoi diagram algorithm is applied
using the determined p.. to partition the entire R into k sub-
workspaces. The Voronoi diagram is a geometric structure
that partitions a specific space into areas based on proximity,
where each point in the area is closest to a center point
compared to any other point [S1]. This structure ensures
that the workspace is partitioned equitably based on the
spatial distribution of task points, enabling efficient and
balanced task allocation. In detail, the point p., in R is
represented as X; = (x;,y;). In addition, let p denotes a
random position in the R space, represented as X = (x, y).
The set of non- overlapping areas on the R space is defined
as G = (Pecys Pecys - - - » Pecy )» Where each area corresponds to
the area closest to a p,. The Euclidean distance between a
point p and p;, is given by d(p, p.;), as defined by Eq. 3:

d(p, pec;) = IX — Xill 3

where, the Voronoi diagram areaV (p.;) is defined by Eq. 4
as follows:

V(pcc,-) = {d(p7 pcci) = d(P» pcq,')v Vj 7é l} (4)

Considering the unique performance and state of each
tractor, dividing the workspace is essential for efficient
task allocation. Considering these factors, a positive weight
is calculated that reflects the performance and state of
each robot. This weight, denoted by w;, is employed to
influence the workspace partitioning process, ensuring that
task allocation is tailored to the capabilities and operational
conditions of each tractor. The variable w; is defined by Eq. 5
as follows:

w; = Ua)l-d + ™ + twf (5)

where w; is calculated considering three critical performance
and state of the tractor: the distance to the task starting point
wl.d, the tractor velocity ", and the tractor fuel capacity Y.
In addition, o, ¢, ¢ are gain coefficients g., representing the
relative importance of the performance and state and allowing
the system to consider the effects on task performance.
However, in this case, all g. values were set to 1, treating
the weight as equally weighted. These factors are integral
to defining w; because they collectively represent the ability
of the tractor to perform tasks efficiently in its allocated
workspace. The three factors are defined by Egs. 6, 7, and 8
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as follows:

d.

d i
o =1-— 6

my my;

m = 1 7
“ iy myi @
0 = ®)

where d; represents the distance from the initial robot position
to a task starting point, mv; denotes the maximum robot
velocity, and c¢; indicates the fuel or battery capacity of the
robot. The weighting distance for applying such a weight is
defined in Eq. 9 as follows:

1
dw (D, Pec;) = ;le —Xill,w; >0 9)
1

Therefore, the i-th sub-workspace W; allocated to the i-th
tractor is equal to the weighted Voronoi region Vy (pc;),
which is defined in Eq. 10 as follows:

Wi = VW(pcci) = {dW(p’ pcc,') = dW(p’ ch;), Vj 75 l} (10)

C. ISOTEMPORAL TASK ALLOCATION

The isotemporal task allocation process optimizes task distri-
bution by dynamically adjusting g. to achieve synchronized
task completion across all tractors. In the previous step,
workspace partitioning was performed, assuming that the
performance and state of each tractor contributed equally to
task allocation, with identical g, values applied uniformly.
However, this assumption does not accurately capture the
varying effects of the critical performance and state factors,
such as the distance from the starting point of the task,
velocity, and fuel capacity, on task completion time. These
variations result in unbalanced workloads, causing inefficient
overall system performance. The isotemporal task allocation
process introduces adaptive g., systematically optimized to
regulate the weighting of these primary performance metrics
to address this challenge. The parameters o, ¢, and ¢
modulate the influence of a)l.d, o, and of, respectively.
By dynamically adjusting these coefficients, the system
equalizes the estimated task completion times across all
tractors, preventing any single tractor from overloading or
underutilization.

This study establishes a mathematical framework that
minimizes deviations in task completion times 7; among
tractors to quantify the effectiveness of isotemporal task
allocation. The objective function is formulated to minimize
the deviation s4 of T;, ensuring synchronized execution across
all tractors. The deviation metric, s4, measures the dispersion
of individual tractor 7; from the mean task completion time,
indicating the imbalance in workload distribution. A lower
sq value corresponds to a more evenly distributed workload
across the fleet, preventing excessive delays caused by
underperforming tractors while optimizing resource use. This
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metric is defined by Eq. 11 as follows:

S (T — T)

3 Y

Sd =
where T represents the mean task completion time for all
tractors, serving as the reference task duration for equalized
T;. This factor is crucial for identifying whether the workload
is balanced across all tractors and preventing scenarios in
which a subset of tractors completes the tasks significantly
earlier or later than others. T is defined using Eq. 12 as
follows:

12)

The optimization problem is formulated to determine the
optimal gain coefficients g,p; that minimize sy, ensuring
balanced T; across all tractors. The gain coefficients directly
influence how the workload is redistributed dynamically to
achieve synchronization in 7;. The optimization is defined
using Eq. 13 as follows:

Sopit = arg min sy (gc) (13)

The estimated task time 7; for each tractor is defined using
Eq. 15 as follows:

T; = Tyork + Tbattery + Trravel

T,

L+ C
[ Rad

(14)

+aa)id(pa);~"" (15)

= TW,+

where Ty, represents the time for a tractor to complete
its designated task. This factor is influenced by the spatial
characteristics of the allocated region and the movement
efficiency of the tractor. In addition, Tpapery accounts for
the time for refueling or recharging. This term is inversely
proportional to e;, the energy consumption efficiency, repre-
senting the fuel efficiency and storage capacity of the tractor.
Moreover, Ttqye; represents the influence of the travel time
on task completion. The coefficients o and ¢ regulate the
effects of a)ld and /" in determining the overall T;. The
equation comprehensively represents the factors affecting
task duration by explicitly modeling these components.

As shown in Algorithm 1, isotemporal task allocation
involves iteratively improving the gain coefficients to mini-
mize the task time variance across the fleet. The As; < €
indicates that the sy is sufficiently minimized, and adjust-
ments to g, are iteratively performed until the s; is minimized
as much as possible. As explained in Section III-B2, g,
represents a gain coefficient of the weights that quantifies
the relative importance of each performance and state weight
(wfl, !, and f) in determining the effective operating
performance w; of each tractor. Consequently, changes in
g directly affect the workload allocation by adjusting the
expected task completion time 7; of each tractor. The
system dynamically optimizes these factors to repeatedly
redistribute the workload across the entire autonomous tractor

VOLUME 13, 2025

Algorithm 1 Isotemporal Task Allocation
Input: Pre-allocated workspace W = {Wy,..
tractors, initial gain coefficient g. = {o, ¢, ¢}
Output: Optimal gain coefficients g

., Wi} for

1: Initialize g,

2: repeat

3:  for each tractor with allocated workspace W; € W do
4 Compute w; < g - [a)l‘.i, o, of]
5 Compute task time 7; < (W}, w;)
6: end for
7

8

9

Compute standard deviation s <« std({71, ..., Tx})
if 5" < s4 then
: Sq < sy
10: 8c < grv
11:  else
12: continue
13:  endif

14: until As; < €

fleet, ensuring that task execution times are minimized and
workloads are balanced.

IV. EXPERIMENTAL DESIGN

A. EXPERIMENTAL SETUP

The experiment used the agricultural environment of Chon-
nam National University as shown in Fig. 5. The experiment
was focused on the seeding system. As shown in Fig. 5(a),
the entire workspace was set to 651m? (Blmx 21m). The
task points within the area were set to the same row and
column spacing of 1m, and a total of 600 task points were
set. As shown in Fig. 5(b), the UAV used in the experiment
was a quadcopter-type drone (3DR SOLO) equipped with
an RGB camera. The camera for image acquisition used
a GoPro Hero 4 model with a resolution of 3840x2160.
The UAV acquired images of the agricultural environment
at an altitude of 70m. Since the actual tractor platform has
experimental limitations due to hardware and environmental
factors, this study only verified the performance of the
proposed system by applying it to a mobile robot platform.
The number of robots when partitioning the workspace was
set to 3 robots that were actually available. Each UGV
performed the task by allocating the partitioned workspace
calculated through the proposed algorithm on a laptop to each
mini-computer.

The parameter settings of the UGV were set as shown
in Table 1. The parameters were set to the distance to the
task start point d;, velocity mv;, battery capacity c;, as well
as the task time per node T, battery consumption rate e;,
and battery recharging time 7. It takes 7, time for each
robot to complete the sowing task on one node, and the
battery capacity of each robot is consumed as much as e;
while performing the task. In addition, when the battery
is completely consumed while the robot performs the task,
it consumes 7, battery charging time and performs the task
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Start point

Start point

21m

Start point

e

7 ﬁ; Mini PC

FIGURE 5. Experimental setup for evaluation: (a) Top view image of experimental environment, (b) Overall experimental environment and configuration.

TABLE 1. Experimental parameters of heterogeneous robots.

Robot o mv @™ ¢ o To e T
ri(Scoutl) 15 030 2 045 20 014 8  0.09
rp(Scout2) 5 0.76 022 75 052 12 012 60
r3(Husky) 1.5 096 1.5 033 50 034 10 0.

again after charging is complete. The experiments were
conducted for both non-optimized (¢ = ¢ ¢) and
optimized (o # ¢ # {) cases to evaluate the optimization
workspace of the proposed algorithm. Each UGV is driven
through a headland pattern using the one-way method, which
is a conventional tractor driving method in [52].

The experiments were conducted to evaluate the scalabil-
ity, adaptability, and efficiency of the proposed algorithm
through numerical verification and field evaluation. Both
evaluations are performed based on images acquired through
UAV in the same environment. The numerical validation
is performed to verify the smooth applicability to field
experiments and the scalability to various models (platforms).
The field evaluation is performed to verify the applicability

166020

and efficiency of the proposed algorithm by applying it to real
environments and robots based on the numerical validation
results.

B. PERFORMANCE METRICS
We used three performance metrics to evaluate the proposed
isotemporal task allocation system. The performance metrics
are the number of nodes allocated per robot Nj;, the
total task time Ty, and the cumulative task time Ty,.
These key performance metrics are designed to quantita-
tively evaluate the workload balancing and task execution
efficiency.

The metric N; is employed to verify that task allocation
is proportionally distributed based on the performance
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capabilities and operational states of each robot, ensuring
an equitable workload distribution. This metric is formally
defined as follows:

Ni = Zpizllocuted (16)

where p; located TEPTESENLS task nodes allocated to the i-th sub-
workspace. This metric quantitatively evaluates the workload
allocated through the workspace partitioning. The difference
in N; between robots represents the workload balancing
allocated to each robot, and robots with higher performance,
such as task processing efficiency, are allocated more tasks
for a balanced workload.

The metric T}y, quantifies the maximum time it takes for a
robot to complete an allocated task, effectively measuring the
efficiency of the proposed system performance. This metric
is defined as follows:

Tiotar = max(Ty, T, ..., Tj) )

where 7; denotes the task completion time of the i-th
robot. Since Ty is defined as the latest task com-
pletion time among all robots, it is an important indi-
cator to determine whether the proposed task allocation
algorithm optimally distributes the workload allocated
to each robot. The lower the value of Ty, the bet-
ter the performance of the proposed system, and min-
imizing the value of Ty, ensures optimal workload
distribution.

The metric ¢, measures the overall system workload by
summing the task completion times of each robot. T¢,, can
be used to evaluate the balancing of task distribution and
resource allocation efficiency for all robots. This metric is
formally defined as follows:

k
Teum = Z T;
i=1

where T, is defined as the sum of the task times of all
robots. A lower value of 7., indicates higher task efficiency.
However, it is difficult to evaluate the task distribution
balancing of the proposed system with only the value of T¢,,,,,,
so it is evaluated through the standard deviation of the task
time. A lower standard deviation indicates a more balanced
workload distribution. In addition, the task time ratio repre-
sented by T, is evaluated in terms of how proportionally
the workload is distributed among the robots. Considering
these factors comprehensively, it directly reflects the ability
of the system to achieve balanced workload distribution, and
can effectively evaluate the performance of the proposed
algorithm.

(18)

V. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed system, numer-
ical validation and field evaluation were performed. This
evaluation evaluated the effectiveness of the isotemporal task
allocation strategy in optimizing task execution and workload
distribution in an autonomous robot fleet. By maintaining
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TABLE 2. The results of isotemporal task allocation parameters.

Parameter c (0] ¢ o) (03 w3

Non-optimized  0.33 0.33 033 030 050 0.53

Optimized 0.19 0.78 0.03 041 033 044

consistency in experimental parameters, the adaptability,
scalability, and efficiency of the proposed method were
verified by directly comparing the simulated performance
with the actual performance.

The results of the isotemporal task allocation are shown
in Table 2. These results were derived through an opti-
mization procedure that iteratively adjusted gain factors
based on given performance data to minimize total oper-
ation time. In the experimental setup, the relatively small
workspace compared to real-world environments reduced
the contribution of fuel and battery factors, while veloc-
ity contributed most by directly reducing movement and
operation times in sub-workspaces. Through the optimized
gain coefficients, the gain coefficients for fuel and battery
capacity showed the lowest values, which means that
fuel and battery capacity had the least influence on the
task time. On the other hand, the gain coefficient values
for velocity showed the highest values, which shows
that the velocity had the greatest influence on the task
time.

A. NUMERICAL VALIDATION

We performed numerical validations to evaluate the perfor-
mance, scalability, and stability of the proposed isotemporal
task allocation system in simulations based on real envi-
ronments. The numerical verification has been performed
previously in our previous work [53], and this subsection
reviews the results. We evaluated the performance of the
proposed system by optimizing the workspace partitioning
and balancing the workload distribution in a heterogeneous
autonomous robot fleet using the proposed method. As shown
in Fig. 6, we compare the optimized and non-optimized cases
to confirm that the gain factor plays an important role in
improving the overall system efficiency, and we verify the
scalability and stability of the proposed isotemporal task allo-
cation system. Each color (red, green, and blue) represents the
workspaces allocated to robots rq, rp, and r3, respectively.
Furthermore, the dotted lines in Fig. 6 represent the actual
paths traveled by each robot in the simulation. Although
some paths overlapped due to the tractor’s driving charac-
teristics, the simulation confirmed smooth operation without
collisions.

As shown in Table 3, r; is allocated the most nodes,
while r, is allocated the least task nodes. This means that
r1 has the highest performance among the three robots, while
rp has the lowest performance. The T, of the proposed
system is reduced by 29.82%. This reduction indicates that
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FIGURE 6. Comparsion of numerical validation for the proposed system performance: (a) Non-optimized isotemporal task allocation in

numerical simulation, (b) Optimized isotemporal task allocation in numerical simulation.
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TABLE 3. Experimental results of the numerical validation.
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FIGURE 7. Comparsion of field evaluation for the proposed system performance: (a) Non-optimized isotemporal task allocation in real

environment, (b) Optimized isotemporal task allocation in real environment.

TABLE 4. Experimental results in open field environment.
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proposed system is reduced by 7.78%, which indicates that

the proposed isotemporal task allocation scheme improves
the cooperative task of the fleet system by minimizing the

task time difference between the robots. The T, of the
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the proposed method improves the workload balance to some
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extent. This result may mean that the performance of the
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proposed system is not very good, but as mentioned earlier,
this indicator should consider additional factors. As shown
in the results of previous studies [53], the slope of the
Teuwm graph in the optimized scenario is more constant and
linear than that in the non-optimized case. Specifically,
the proposed system showed a 93.65% reduction in sg4.
This result means that the proposed task allocation system
minimized the difference in task completion times of all
robots. The consistency of each task time indicates that
the proposed system distributed the task time more evenly
among all robots, preventing unnecessary time waste by
allowing some robots to complete the task faster than
others.

The results of numerical validation showed that the
proposed system efficiently performed tasks by allocating
appropriate workloads to robots with different performances
and states and minimizing unnecessary task time. In the non-
optimized case, the workspace was partitioned differentially,
but it caused a lot of unnecessary waiting time until
the highest performing robot completed all tasks and the
lowest performing robot completed them. Numerically, the
highest performing robot had to wait for the remaining
time after performing the same task again. However, in the
optimized case, all task times were performed within 2 min-
utes, minimizing unnecessary waiting time. These results
of numerical validation showed that the proposed system
can be applied to various platforms and can perform tasks
efficiently.

B. FIELD EVALUATION

We conducted a field evaluation to evaluate the performance,
reliability, and adaptability of the proposed isotemporal task
allocation algorithm in a real agricultural environment. The
field evaluation evaluated the proposed system adaptability in
areal agricultural environment and the reliability that was not
different from the numerical verification results. As shown in
Fig. 7, similar to the numerical validation, we verified the
performance of the proposed system in terms of workload
distribution and system adaptability through comparative
analysis of the non-optimized and optimized cases. Similar
to Figure 6, each color (red, green, and blue) represents the
workspaces allocated to robots ry, r», and r3, respectively.
Although the robots’ movement paths are not separately dis-
played in Fig. 7, the simulation results were similar to those
in Fig. 6, confirming that all robots moved stably and without
collisions.

The results of the field evaluation are presented in
Table 4, which are similar to the results of the numerical
verification. It shows that the most nodes are allocated to
the best performing ry, and the least nodes are allocated
to the worst performing r,. In the optimized case, we con-
firmed the effect of the gain factor, which significantly
minimizes the difference in task time and equalizes the
task completion times of all robots. Ty also shows
a significant reduction. In the optimized case, Ty 1S
reduced by about 25.88%. In addition, T, is reduced by
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5.82%, and sy is significantly reduced by 92.89%. This
indicates that the proposed system’s workspace partitioning
effectively integrates important performance indicators such
as velocity, battery capacity, and initial positioning in a
real environment, thereby ensuring a balanced workload
distribution among robots with different performances and
states.

The numerical verification and field evaluation of the
proposed system under the same conditions showed similar
results. The N; showed very minor differences, and the T}y
showed relative errors of 2.39% and 7.43% for each case.
Similarly, the T, showed relative errors of 5.45% and
7.42% for each case, and the s; showed relative errors of
6.36% and 0.04% for each case. These results demonstrate
that the proposed system maintains high consistency and
performance in real environments and numerical simulations.
Therefore, it can be directly applied to real environments and
platforms through realistic environment and platform based
simulations, and can show stable and high accuracy. Through
these experiments, we demonstrate the practical applicability
of the proposed system to real agricultural environments
and platforms, and highlight its potential to enhance the
scalability, adaptability, and efficiency of MRS in precision
agriculture.

VI. DISCUSSION

A. NODE MAP GENERATION

The proposed system is designed to be scalable to various
tasks. In this study, we applied the proposed system to the
sowing system and conducted experiments. However, not all
tasks can set up and perform these experimental environments
in the same way. In particular, in the orchard environment,
the task points are trees during harvesting or spraying task.
However, it is still difficult to apply because trees act as
obstacles rather than task points during driving. Nevertheless,
the proposed system can be applied in other ways. For
example, in the case of spraying task, data can be provided
in an environment suitable for generating paths between
nodes through node map generation. Therefore, by integrat-
ing the node map generation research applicable to each
agricultural task, widely applicable task allocation can be
performed.

B. PATH PLANNING

The proposed system has been proven through experiments to
perform optimal tasks. Multi-UGV are allocated to task nodes
and simply follow them. This method should consider the
path through the dynamic structure of the platform, especially
the tractor, for the rotation to move to the next row or
column. For the robots (scout, husky) used in this study, path
planning for tractor rotation is not required. However, for
application to actual tractors, task allocation studies including
path planning considering the structure of the platform are
required. Additionally, because the terrain where work is
performed in agriculture is an unstructured environment,
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a path planning algorithm that takes into account factors
such as traversability is required. An autonomous tractor fleet
system that integrates these studies will be able to perform
more optimal agricultural tasks.

C. PERFMANCE AND STATE PARAMETER SETTING

The proposed task allocation system is implemented by
considering the platform performance and current state.
However, in the actual tasking environment, there are many
parameters that need to be considered for the tractor and
the surrounding environment. In order to achieve optimal
task allocation, all parameters must be considered for
task distribution. In addition, other parameter settings are
required depending on the environment. Furthermore, the
addition of multiple variables can lead to weight calcu-
lation distortions due to differences in units and ranges.
To address this issue, additional normalization techniques
are required to calculate weights. This approach can perform
appropriate task allocation for various environments and
platforms.

D. DIRECTIONS FOR FUTURE WORK

The insights gained from this study suggest several avenues
for advancing agricultural robotic systems. The proposed
concurrent task allocation algorithm is generalizable and
can be applied to a wider range of contexts. Despite
adopting simple parameters, this study demonstrates that
the proposed algorithm can be effectively applied to het-
erogeneous swarm tractor or robot control. Future research
can aim to develop quantitative performance metrics for
practical validation by evaluating parameters for real-world
platforms and terrains, task completion efficiency, pre-
cision through repeated experiments, performance supe-
riority through comparisons with other task allocation
algorithms, and adaptability to diverse environments and
tasks.

Performance validation in large-scale robot fleets and
extensive experimental environments is crucial to ensuring
the scalability and robustness of the proposed algorithm.
Furthermore, the addition of metrics that affect performance
and state parameter settings in real-world tasks plays a crucial
role in verifying the performance of the proposed algorithm
more clearly. Developing systematic normalization or scaling
methods for these heterogeneous metrics will improve the
interpretability and consistency of multi-robot task alloca-
tion. Performance evaluations will expand beyond the current
metrics and allow for a more comprehensive evaluation
through comparisons with other task allocation algorithms.
By addressing these limitations, future research could
improve the robustness, scalability, and practical applicability
of the proposed approach to real-world agricultural robot
fleets.

VIi. CONCLUSION
This study proposes a Voronoi-based isotemporal task
allocation system for autonomous tractor fleet. It is designed
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to derive optimal weights by reflecting the performance
and state importance of each robot and efficiently partition
the workspace. Performance and state are evaluated based
on parameters such as distance, velocity, and capacity,
including the number of allocated nodes, total work time,
and accumulated work time. Comparing the pre- and post-
optimization results, we confirmed that equalizing work
times can reduce waiting times and improve agricultural work
efficiency. Furthermore, numerical validation and field evalu-
ations demonstrate the applicability and practical utility of the
proposed algorithm. These results demonstrate its potential
for extension to various tractor-based collaborative work
models.

In the future, we would like to extend the current
research to more complex and various scenarios. The
currently proposed algorithm is designed for a simple
scenario without obstacles. Considering the influence of the
surrounding environment and obstacles in the task allocation
algorithm is one of our main research tasks. Therefore, the
proposed task allocation algorithm can be further integrated
with SLAM and path planning algorithms to perform an
improved task allocation system for autonomous tractor fleet
systems.
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