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ABSTRACT This study proposes an isotemporal task allocation system for autonomous tractor vehicles to
improve agricultural task efficiency. The proposed system integrates Voronoi-based workspace partitioning
and isotemporal task allocation. The method performs isotemporal tasks by considering the performance
and state (including distance, velocity, and fuel and battery capacity) of each tractor by adopting an optimal
workspace partitioning method. Based on these factors, the system optimizes the sub-workspace allocation
to minimize the task time deviation and ensure balanced workload distribution among heterogeneous robots.
The proposed system is evaluated through numerical verification and field evaluation in an agricultural
environment. The results of the field evaluation show that the task efficiency is significantly improved, such
as a 25.88% reduction in total task time and a 92.89% reduction in task time deviation under optimized
conditions. In addition, the similar results of the two evaluations indicate high consistency and performance
maintenance of the proposed system performance. Through the proposed system, it can be easily applied
to various tractor-based vehicle cooperative task models, and efficient task performance can be expected by
reducing idle time and allowing tractors to perform the next task.

INDEX TERMS Agricultural robot, isotemporal task allocation, Voronoi diagram, workspace partitioning.

I. INTRODUCTION15

Automation of agricultural systems is critical to improving16

productivity and ensuring sustainable food production. The17

introduction of autonomous tractors plays a key role in18

the advancement of agricultural system automation [1]. The19

autonomous tractors can perform various agricultural tasks20

without human intervention, which significantly improves21

operational efficiency, driver safety, and labor costs compared22

to manual tractors [2]. By integrating advanced Global23

Navigation Satellite System (GNSS)-based navigation sys-24

tems, AI-based task scheduling, and precision agriculture25

technologies, autonomous tractors can perform field task26

with sub-centimeter accuracy, reducing input waste and27

improving crop yield efficiency [3], [4], [5]. Additionally,28
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the rapid development of AI, the Internet of Things (IoT), 29

and autonomous control systems has further accelerated the 30

commercialization of these technologies, and major agri- 31

cultural machinery manufacturers are implementing robust 32

sensor networks, real-time kinematic (RTK) positioning, 33

and machine learning-based adaptive control strategies [6]. 34

Using real-time data analytics and adaptive multi-agent 35

task allocation algorithms, autonomous tractors can dynam- 36

ically adjust operating parameters based on soil conditions, 37

crop growth stages, and environmental variables, creat- 38

ing a more sustainable and resource-efficient agricultural 39

ecosystem [7]. 40

The autonomous tractor fleet system that collaborates 41

with multiple tractors is an efficient agricultural automa- 42

tion system that intelligently distributes tasks among 43

tractors to further improve farm productivity and yield. 44

The system applies advanced control algorithms, real-time 45
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communication networks, and sensor fusion to optimize46

operations and ensure efficient task execution. References [8]47

and [9] dynamically allocated tasks and coordinated opera-48

tions between tractors through fleet technology to improve49

resource utilization, minimize overlapping task, and enhance50

farm productivity and yield. In addition, by integrating51

real-time data analysis and adaptive autonomous driving52

strategies, the tractor system can dynamically adapt to chang-53

ing field conditions, improve decision-making, and improve54

operational efficiency [10]. This approach improves the55

accuracy of task execution and ensures strong adaptability to56

various terrain and crop conditions. This autonomous tractor57

fleet system contributes to the development of sustainable58

agricultural automation by optimizing fuel consumption,59

reducing emissions, and supporting precision agriculture60

technologies such as variable use of fertilizers and pesticides.61

Extensive research on autonomous tractor vehicle technol-62

ogy has been conducted in the field of agricultural robots.63

Agricultural robotics research has been conducted in the64

context of heterogeneous swarm robot systems [11], [12].65

Multi-robot task allocation (MRTA), Multi-robot path plan-66

ning (MAPP), and cooperative control are required for swarm67

robot systems [13], [14]. For example, MRTA dynamically68

distributes work loads based on tractor performance, task pri-69

orities, and environmental conditions to avoid inefficiencies70

due to idle or overload. Path planning plans appropriate paths71

for tractors considering the dynamic structure of tractors,72

optimization of task time, etc. during agricultural task [15],73

[16]. Cooperative control enables multiple tractors to task74

cooperatively toward a common goal through advanced75

control algorithms and real-time communication systems,76

enabling synchronized movement and efficient achievement77

of common goals. A common approach in cooperative control78

is the leader-follower technique, where one or more tractors79

act as leaders and guide the movements of the follower80

tractors to ensure coordinated and efficient operation [17],81

[18]. The integration of these technologies is essential to82

improve the scalability and efficiency of autonomous farming83

systems.84

In agricultural environments, optimal workload distri-85

bution directly affects vehicle efficiency, scalability, and86

overall field productivity by mitigating tractor overload and87

task time [19]. In addition, the improved workload alloca-88

tion technique enhances agricultural machinery utilization89

through intelligent distribution strategies including optimized90

full-field coverage through computationally efficient path91

planning, adaptive workspace allocation based on field92

topography and soil heterogeneity, and energy-saving strate-93

gies [12], [20]. These methods ensure balanced workload94

distribution, minimize operational delays, and improve over-95

all system throughput. The task allocation framework, which96

integrates mixed-integer linear programming (MILP) [21],97

heuristic-based optimization [22], and dynamic reallocation98

strategies, enables autonomous tractor vehicles to dynami-99

cally adapt to real-time environmental changes, unexpected100

disturbances, and operational uncertainties. Enhanced task 101

allocation algorithms and optimization techniques create a 102

scalable and robust foundation for autonomous tractor fleet 103

systems to meet the evolving needs of modern precision 104

agriculture. 105

In agricultural operations using autonomous tractor fleet, 106

inherent differences in tractor performance and operating 107

conditions (e.g., engine power, fuel economy, payload, initial 108

position, mechanical reliability) pose significant challenges 109

to achieving optimal efficiency. These differences can 110

lead to imbalances in operational capabilities, complicating 111

effective management of the overall operation. Furthermore, 112

operational challenges are further exacerbated by external 113

environmental factors such as soil conditions, crop maturity 114

stages, and rapidly changing weather patterns common 115

in agricultural environments. To address these challenges, 116

an adaptive task allocation mechanism that utilizes accu- 117

rate data analysis and allocation strategies to distribute 118

appropriate tasks based on tractor performance and environ- 119

mental conditions is essential. In addition, this strategy can 120

mitigate workload imbalances, ensuring optimal utilization 121

of high-performance tractors and preventing overloading 122

of low-performance tractors. Such solutions can signifi- 123

cantly improve synchronization between tractors, improve 124

resource utilization, and maximize vehicle productivity and 125

efficiency. 126

As mentioned earlier, to effectively address these chal- 127

lenges, a differential workspace partitioning task allocation 128

system that optimizes the workspace allocation of individual 129

tractors is essential. This system distributes the workload 130

by considering the specific performance and current state of 131

each tractor (e.g. engine power, fuel capacity, initial position), 132

minimizing idle time, and ensuring balanced workload 133

distribution across the vehicle. Furthermore, integrating 134

this task allocation mechanism with autonomous systems 135

allows for dynamic adjustments based on environmental 136

conditions and operational feedback, effectively responding 137

to unexpected obstacles, terrain changes, or task delays. This 138

approach maximizes operational efficiency and improves 139

vehicle-wide collaboration, enabling a scalable and robust 140

autonomous tractor fleet system to address the challenges of 141

modern agricultural environments. 142

This paper proposes a Voronoi-based isotemporal task 143

allocation system to improve the operational efficiency 144

of autonomous tractor fleet in agricultural environments. 145

The proposed method combines Voronoi-based task space 146

partitioning with an isotemporal allocation strategy to assign 147

differentiated tasks that reflect the tractor’s performance and 148

state. This task allocation approach maximizes workload 149

balance and overall efficiency through isotemporal task allo- 150

cation that minimizes task completion times. The proposed 151

method demonstrates its feasibility and applicability through 152

numerical validation and field experiments in real agricultural 153

environments, demonstrating both theoretical validity and 154

practical applicability. 155
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A. RELATED WORKS156

1) AUTONOMOUS TRACTOR FLEET157

In agriculture, researchers have developed multi-robot agri-158

cultural tractors (or vehicles) to reduce total work time159

and increase work efficiency [8]. Furthermore, a leader-160

follower system was developed to improve work efficiency161

for multi-robot tractor systems [23], [24], [25], [26]. [27]162

developed a team of robotic tractors to harvest peat moss.163

In this system, three robot tractors worked in three fields, and164

a human operator remotely commanded and monitored the165

robots. An agricultural multi-robot system (MRS) is similar166

to the sweep coverage robot system [28], [29], [30], [31], both167

of which must cover a large area in a minimum time. Recent168

advances have incorporated machine learning, computer169

vision, and communication technology, such as vehicle-170

to-vehicle (V2V) and vehicle-to-network (V2N) systems,171

to enhance adaptability, real-time coordination, and task172

optimization in dynamic environments. These innovations173

enable scalable, resource-efficient, and environmentally174

sustainable solutions for modern agricultural practices.175

However, in environments with limited communication, the176

risk of a robot leaving the communication zone and losing177

contact with other robots increases, resulting in duplicate178

task assignments, unnecessary exploration, and significantly179

increasing the overall task completion time.180

2) MULTI-ROBOT TASK ALLOCATION181

To effectively address these challenges, it is crucial to182

understand and optimize the fundamental problems ofMRTA183

in complex environments [32]. In applying an autonomous184

tractor fleet to agricultural tasks, MRTA should be performed185

to distribute each task to the robots. MRTA optimally allo-186

cates a task set to a robot team to optimize the overall system187

performance subject to a set of constraints [33]. Several188

MRTA studies have proposed distributed approaches to189

address scalability issues and cooperative game theory [34].190

Among these, market-based methods [35] utilize auction-like191

negotiation techniques and have proven successful in various192

domains [36]. Reference [32] conducted a study to optimize193

task execution time for spatially distributed and non-atomic194

tasks through a task allocation and scheduling model that195

allocates tasks considering a limited communication environ-196

ment where robots rely on partial information. Graph neural197

networks have also been used for distributed multi-robot goal198

allocation [37]. These MRTAs often do not directly reflect199

the physical location relationship between robots and tasks.200

This can result in robots located far apart unnecessarily taking201

on distant tasks, which can increase travel distances and202

delay task start times. Furthermore, because task distribution203

considers the entire robot-task combination, computational204

complexity increases rapidly as the problem size increases.205

3) VORONOI-BASED MRTA206

TheVoronoi diagram partitions an area according to a random207

point closest to the center. Voronoi diagrams are commonly208

employed to allocate multi-robot paths or workspaces, and 209

studies have been conducted on this topic [38], [39], [40]. 210

A limited central Voronoi tessellation for approximations 211

of the surface to be covered has been proposed [41]. This 212

approach considerably reduces the probability of being 213

trapped in the local optima, which is far from the globally 214

optimal solution. The number of iterations of measurements 215

and calculations required for the algorithm to converge is 216

also lower. This advantage can be significant for the success 217

of missions in complex environments where unpiloted aerial 218

vehicles (UAVs) with limited energy are deployed. A cover- 219

age control algorithm for a group of network robots achieving 220

discrete Voronoi coverage in surface mesh is presented [42]. 221

The algorithm approximates the Voronoi region with a 222

mesh cell to minimize the cost of the entire Voronoi 223

configuration, reallocating the cell locally to the adjacent 224

region. The experimental results, such as convergence rate, 225

local minimumof the lane, final configuration cost, and initial 226

configuration, were analyzed on scales. Previous studies 227

have proposed MRTA algorithms tailored for homogeneous 228

and heterogeneous agricultural MRSs, using Voronoi-based 229

methods for workspace partitioning and task allocation [43], 230

[44]. However, a remaining critical limitation is that the 231

resulting area partitioning is not optimally balanced or 232

dynamically adaptable. The existing approaches often neglect 233

essential operational constraints, such as energy consumption 234

thresholds and temporal limitations, which are critical for 235

guaranteeing robust and scalable MRTA implementations. 236

Consequently, the current task allocation methods are 237

limited in maximizing task efficiency while ensuring an 238

equitable workload distribution across heterogeneous robotic 239

systems [45], [46], [47]. 240

B. CONTRIBUTIONS AND NOVELTY 241

The contributions and novelty of this study are summarized 242

as follows: 243

1) The proposed isotemporal task allocation system 244

is designed to allocate Voronoi-based partitioned 245

workspaces for autonomous tractor fleets, minimizing 246

idle time and balancing workload distributions. 247

2) The workspace partitioning that allocates sub- 248

workspaces for each tractor is considered based on the 249

performance and state of the tractors. 250

3) The isotemporal allocation that optimizes workspaces 251

allocated on each tractor is allocated by reducing the 252

overall task time and equalizing workloads. 253

4) A numerical validation and field evaluation verify the 254

scalability, adaptability, and efficiency of the proposed 255

system. 256

II. PROBLEM DESCRIPTION 257

In agricultural operation scenarios, the completion time of 258

agricultural robotic vehicles is a critical factor, which is 259

usually expressed as task execution time [48]. The workload 260

distribution of each robot should be considered to ensure a 261
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FIGURE 1. Task allocation system for autonomous tractor fleet: A camera-equipped UAV detects the workspace and calculates and allocates a suitable
sub-workspace to each tractor.

workload distribution that is as balanced as possible to avoid262

robot overload or excessive idleness [19] due to performance263

variability of vehicles and unpredictable environmental264

conditions. Differences in engine power, fuel efficiency,265

payload capacity, and initial positioning significantly influ-266

ence tractor performance, leading to uneven task completion267

times, resource underutilization, and operational challenges.268

Traditional task allocation methods often fail to address269

these variations adequately, resulting in productivity losses270

and suboptimal fleet performance. Thus, MRTA strategies271

become essential to mitigating these problems, ensuring that272

tasks are optimally allocated to match the capabilities and273

state of each vehicle.274

To effectively address these challenges, tasks must be275

allocated by explicitly considering the performance and state276

variability of heterogeneous tractors. In a previous study [43],277

[44], we has extensively explored various MRTA techniques,278

focusing predominantly on spatial allocation methods such as279

Voronoi-based workspace partitioning (Fig. 1). Suchmethods280

leverage the Voronoi algorithm to partition workspaces,281

enabling MRS to receive distinct workspaces. This approach282

allows for dynamic allocation by incorporating robot-specific283

performance metrics and operational states. By assigning284

weighted values to each robot based on its capabilities such as285

distance from initial position, velocity, and battery capacity286

the method achieves differentiated partitioning, ensuring287

that each robot is allocated a task region proportional to288

its efficiency and capacity. However, these methods fail289

to account for how factors such as distance from the290

initial position, velocity, and battery capacity influence task291

duration, leading to suboptimal task allocation that does not 292

guarantee the most efficient workspace distribution. 293

Therefore, an optimization process that explicitly con- 294

siders the effect of these factors on the task completion 295

time is necessary to achieve a more precise and effective 296

allocation strategy. Incorporating critical influencing factors, 297

including distance, velocity, and battery capacity, is crucial 298

to achieve this result in workspace partitioning. In this 299

study, we considered three key performance and state 300

factors—distance, velocity, and battery capacity—to model 301

task completion times. This task was performed on flat, 302

unpaved terrain and assumed a path plan that followed 303

the work nodes. The tractor’s turning radius was set to a 304

semi-circle with a diameter of 1m, based on the distance 305

between the task nodes. Furthermore, we assumed that the 306

tractor would recharge and re-enter the field after exhausting 307

its battery capacity, thereby verifying the effectiveness of 308

continuous charging. The allocation of workspaces considers 309

the duration of simultaneous tasks, leading to efficient, 310

equitable, and adaptive workspace partitions responsive to 311

real-time operational data and environmental conditions. This 312

synchronized approach enhances the scalability, adaptability, 313

and overall operational efficiency of autonomous tractor 314

fleets, providing a suitable, robust solution for dynamic 315

agricultural environments. 316

III. VORONOI-BASED ISOTEMPORAL TASK ALLOCATION 317

SYSTEM 318

This section presents the proposed task allocation system, 319

integrating adaptive workspace partitioning and isotemporal 320
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FIGURE 2. Flow chart of the proposed task allocation system.

optimization to enhance scalability, adaptability, and effi-321

ciency in multi-robot task execution. The isotemporal task322

allocation strategy ensures synchronized task completion323

across heterogeneous autonomous tractors by incorporating324

k-means clustering for the initial task grouping, weighted325

Voronoi diagrams for workspace partitioning, and isotempo-326

ral optimization techniques to adjust workload distributions327

dynamically. The proposed method accounts for variations328

in tractor performance metrics, including velocity, energy329

consumption, and payload capacity, ensuring that each tractor330

is allocated an optimized workspace based on its capabilities.331

Fig. 2 illustrates the process flow of the Voronoi-based332

isotemporal task allocation system, detailing the steps333

involved in nodemap generation, workspace partitioning, and334

isotemporal optimization.335

A. NODE MAP GENERATION336

Accurately mapping the agricultural environment is a337

fundamental requirement for precise task allocation and338

workspace partitioning in autonomous tractor systems. Thus,339

UAV-based photogrammetry was adopted as computationally340

efficient approach for workspace mapping to mitigate341

these constraints [49]. Using UAV equipped with mapping342

camera, ensuring comprehensive field coverage with minimal343

operational cost.344

As shown in Fig. 3, the mapping process begins with345

aerial sensing to detect and classify task-relevant areas.346

The collected spatial data are processed to extract task347

points, which are discretized as individual nodes in the348

FIGURE 3. Generation a sensing image based node map using UAV with
camera.

workspace. Each task point is systematically converted into 349

a corresponding node on the generated node map, capturing 350

spatial dependencies and functional constraints for efficient 351

task execution. This structured workspace representation 352

provides the foundation for isotemporal task allocation by 353

incorporating terrain topology, crop distribution, and field 354

accessibility constraints. Integrating UAV-based mapping 355
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FIGURE 4. Node clustering using k-means clustering algorithm: (a) Initial centroid placed in an arbitrary space close to the entrance, (b) Calculation
process until the center point of the sub-workplace no longer changes.

accelerates initial data acquisition and enhances the scalabil-356

ity and adaptability of task allocation methods, supporting357

the deployment of autonomous tractors in large-scale and358

dynamically changing agricultural environments. This map-359

ping pipeline forms a critical component of the proposed360

system, enabling optimized and context-aware workspace361

partitioning for autonomous field operations.362

B. WORKSPACE PARTITIONING363

1) NODE CLUSTERING364

The first step in workspace partitioning involves node365

clustering, identifying the central points for partitioning366

the workspace using a Voronoi diagram. This process367

establishes cluster centroids to allocate workspace among368

k autonomous tractors. The initial cluster centroids are369

strategically placed near the current positions of the tractors370

to enhance the efficiency and effectiveness of task allocation.371

This approach minimizes initial travel distances, reduces372

energy consumption, and optimizes resource utilization. The373

k-means clustering algorithm, a well-established and compu-374

tationally efficient method for partitioning high-dimensional375

data, is employed due to its effectiveness proven over several376

decades in clustering tasks [50].377

The total set of task-relevant nodes is denoted as Rn =378

xi, (i = 1, 2, . . . , n), representing spatially distributed task379

points in workspace R. Given Rn, the algorithm partitions380

these nodes into C = cj, (j = 1, 2, . . . , k) clusters, where 381

each cluster cj has a centroid denoted by µj. The objective of 382

k-means clustering is tominimize the total within-cluster sum 383

of squared errors (SSE), defined as the squared Euclidean 384

distance between each node xi and its corresponding cluster 385

centroid µj, as formulated in Eq. 1: 386

SSE(C) =
k∑
j=1

∑
xi∈Cj

|xi − µj|
2 (1) 387

where k represents the number of autonomous tractors for the 388

agricultural task. The k-means clustering algorithm proceeds 389

through a structured iterative process, as illustrated in Fig. 4. 390

First, an initial centroid µ1
j is randomly selected for each 391

cluster, serving as the initial cluster center point pcc near the 392

entrance. Second, all nodes are allocated to the nearest pcc. 393

Third, the updated position of each pcc is calculated based 394

on the centroid for all allocated nodes in the cluster. Finally, 395

this process is repeated for N times or until convergence, 396

defined as the point where no further change in any pcc 397

occurs, as formulated in Eq. 2: 398

pcc = µ
(N+1)
j =

1

|C (N )
j |

∑
xi∈C

(N )
j

xi (2) 399

By systematically clustering task nodes Rn into k 400

groups, the system derives optimal cluster centroids for 401
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Voronoi-based workspace allocation. Combined with strate-402

gic centroid initialization near tractors, this approach403

ensures balanced workloads, minimizes tractor idle time,404

and enhances task execution efficiency. Consequently, the405

proposed clustering method supports scalable and adaptive406

workspace partitioning, facilitating robust and efficient407

operations in dynamic agricultural environments.408

2) VORONOI-BASED PARTITIONING409

The second step for workspace partitioning is the410

Voronoi-based partitioning process, which partitions areas411

based on pcc. The Voronoi diagram algorithm is applied412

using the determined pcc to partition the entire R into k sub-413

workspaces. The Voronoi diagram is a geometric structure414

that partitions a specific space into areas based on proximity,415

where each point in the area is closest to a center point416

compared to any other point [51]. This structure ensures417

that the workspace is partitioned equitably based on the418

spatial distribution of task points, enabling efficient and419

balanced task allocation. In detail, the point pcci in R is420

represented as Xi = (xi, yi). In addition, let p denotes a421

random position in the R space, represented as X = (x, y).422

The set of non- overlapping areas on the R space is defined423

asG = (pcc1 , pcc2 , . . . , pcck ), where each area corresponds to424

the area closest to a pcci . The Euclidean distance between a425

point p and pcci , is given by d(p, pcci ), as defined by Eq. 3:426

d(p, pcci ) = ∥X − Xi∥ (3)427

where, the Voronoi diagram areaV (pcci ) is defined by Eq. 4428

as follows:429

V (pcci ) = {d(p, pcci ) ≤ d(p, pccj ), ∀j ̸= i} (4)430

Considering the unique performance and state of each431

tractor, dividing the workspace is essential for efficient432

task allocation. Considering these factors, a positive weight433

is calculated that reflects the performance and state of434

each robot. This weight, denoted by ωi, is employed to435

influence the workspace partitioning process, ensuring that436

task allocation is tailored to the capabilities and operational437

conditions of each tractor. The variable ωi is defined by Eq. 5438

as follows:439

ωi = σωd
i + ϕωmv

i + ζωc
i (5)440

where ωi is calculated considering three critical performance441

and state of the tractor: the distance to the task starting point442

ωd
i , the tractor velocity ωmv

i , and the tractor fuel capacity ωc
i .443

In addition, σ, ϕ, ζ are gain coefficients gc, representing the444

relative importance of the performance and state and allowing445

the system to consider the effects on task performance.446

However, in this case, all gc values were set to 1, treating447

the weight as equally weighted. These factors are integral448

to defining ωi because they collectively represent the ability449

of the tractor to perform tasks efficiently in its allocated450

workspace. The three factors are defined by Eqs. 6, 7, and 8451

as follows: 452

ωd
i = 1−

di∑n
i=1 di

(6) 453

ωmv
i =

mvi∑n
i=1mvi

(7) 454

ωc
i =

ci∑n
i=1 ci

(8) 455

where di represents the distance from the initial robot position 456

to a task starting point, mvi denotes the maximum robot 457

velocity, and ci indicates the fuel or battery capacity of the 458

robot. The weighting distance for applying such a weight is 459

defined in Eq. 9 as follows: 460

dW (p, pcci ) =
1
ωi
∥X − Xi∥, ωi > 0 (9) 461

Therefore, the i-th sub-workspace Wi allocated to the i-th 462

tractor is equal to the weighted Voronoi region VW (pcci ), 463

which is defined in Eq. 10 as follows: 464

Wi = VW (pcci ) = {dW (p, pcci ) ≤ dW (p, pccj ), ∀j ̸= i} (10) 465

C. ISOTEMPORAL TASK ALLOCATION 466

The isotemporal task allocation process optimizes task distri- 467

bution by dynamically adjusting gc to achieve synchronized 468

task completion across all tractors. In the previous step, 469

workspace partitioning was performed, assuming that the 470

performance and state of each tractor contributed equally to 471

task allocation, with identical gc values applied uniformly. 472

However, this assumption does not accurately capture the 473

varying effects of the critical performance and state factors, 474

such as the distance from the starting point of the task, 475

velocity, and fuel capacity, on task completion time. These 476

variations result in unbalanced workloads, causing inefficient 477

overall system performance. The isotemporal task allocation 478

process introduces adaptive gc, systematically optimized to 479

regulate the weighting of these primary performance metrics 480

to address this challenge. The parameters σ , ϕ, and ζ 481

modulate the influence of ωd
i , ωmv

i , and ωc
i , respectively. 482

By dynamically adjusting these coefficients, the system 483

equalizes the estimated task completion times across all 484

tractors, preventing any single tractor from overloading or 485

underutilization. 486

This study establishes a mathematical framework that 487

minimizes deviations in task completion times Ti among 488

tractors to quantify the effectiveness of isotemporal task 489

allocation. The objective function is formulated to minimize 490

the deviation sd of Ti, ensuring synchronized execution across 491

all tractors. The deviation metric, sd , measures the dispersion 492

of individual tractor Ti from the mean task completion time, 493

indicating the imbalance in workload distribution. A lower 494

sd value corresponds to a more evenly distributed workload 495

across the fleet, preventing excessive delays caused by 496

underperforming tractors while optimizing resource use. This 497
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metric is defined by Eq. 11 as follows:498

sd =

√∑k
i=1(Ti − T )2

k
(11)499

where T represents the mean task completion time for all500

tractors, serving as the reference task duration for equalized501

Ti. This factor is crucial for identifying whether the workload502

is balanced across all tractors and preventing scenarios in503

which a subset of tractors completes the tasks significantly504

earlier or later than others. T is defined using Eq. 12 as505

follows:506

T =
1
k

k∑
i=1

Ti (12)507

The optimization problem is formulated to determine the508

optimal gain coefficients gopti that minimize sd , ensuring509

balanced Ti across all tractors. The gain coefficients directly510

influence how the workload is redistributed dynamically to511

achieve synchronization in Ti. The optimization is defined512

using Eq. 13 as follows:513

gopti = argmin
gc

sd (gc) (13)514

The estimated task time Ti for each tractor is defined using515

Eq. 15 as follows:516

Ti = Twork + Tbattery + Ttravel (14)517

= TWi +
Tc

eiζωc
i
+ σωd

i ϕωmv
i (15)518

where Twork represents the time for a tractor to complete519

its designated task. This factor is influenced by the spatial520

characteristics of the allocated region and the movement521

efficiency of the tractor. In addition, Tbattery accounts for522

the time for refueling or recharging. This term is inversely523

proportional to ei, the energy consumption efficiency, repre-524

senting the fuel efficiency and storage capacity of the tractor.525

Moreover, Ttravel represents the influence of the travel time526

on task completion. The coefficients σ and ϕ regulate the527

effects of ωd
i and ωmv

i in determining the overall Ti. The528

equation comprehensively represents the factors affecting529

task duration by explicitly modeling these components.530

As shown in Algorithm 1, isotemporal task allocation531

involves iteratively improving the gain coefficients to mini-532

mize the task time variance across the fleet. The 1sd < ϵ533

indicates that the sd is sufficiently minimized, and adjust-534

ments to gc are iteratively performed until the sd is minimized535

as much as possible. As explained in Section III-B2, gc536

represents a gain coefficient of the weights that quantifies537

the relative importance of each performance and state weight538

(ωd
i , ωmv

i , and ωc
i ) in determining the effective operating539

performance ωi of each tractor. Consequently, changes in540

gc directly affect the workload allocation by adjusting the541

expected task completion time Ti of each tractor. The542

system dynamically optimizes these factors to repeatedly543

redistribute theworkload across the entire autonomous tractor544

Algorithm 1 Isotemporal Task Allocation
Input: Pre-allocated workspace W = {W1, . . . ,Wk} for
tractors, initial gain coefficient gc = {σ, φ, ζ }

Output: Optimal gain coefficients g∗c
1: Initialize gc
2: repeat
3: for each tractor with allocated workspaceWi ∈ W do
4: Compute ωi← gc · [ωd

i , ω
mv
i , ωc

i ]
5: Compute task time Ti← (Wi, ωi)
6: end for
7: Compute standard deviation sd ← std({T1, . . . ,Tk})
8: if snewd < sd then
9: sd ← snewd

10: gc← gnewc
11: else
12: continue
13: end if
14: until 1sd < ϵ

fleet, ensuring that task execution times are minimized and 545

workloads are balanced. 546

IV. EXPERIMENTAL DESIGN 547

A. EXPERIMENTAL SETUP 548

The experiment used the agricultural environment of Chon- 549

nam National University as shown in Fig. 5. The experiment 550

was focused on the seeding system. As shown in Fig. 5(a), 551

the entire workspace was set to 651m2 (31m× 21m). The 552

task points within the area were set to the same row and 553

column spacing of 1m, and a total of 600 task points were 554

set. As shown in Fig. 5(b), the UAV used in the experiment 555

was a quadcopter-type drone (3DR SOLO) equipped with 556

an RGB camera. The camera for image acquisition used 557

a GoPro Hero 4 model with a resolution of 3840×2160. 558

The UAV acquired images of the agricultural environment 559

at an altitude of 70m. Since the actual tractor platform has 560

experimental limitations due to hardware and environmental 561

factors, this study only verified the performance of the 562

proposed system by applying it to a mobile robot platform. 563

The number of robots when partitioning the workspace was 564

set to 3 robots that were actually available. Each UGV 565

performed the task by allocating the partitioned workspace 566

calculated through the proposed algorithm on a laptop to each 567

mini-computer. 568

The parameter settings of the UGV were set as shown 569

in Table 1. The parameters were set to the distance to the 570

task start point di, velocity mvi, battery capacity ci, as well 571

as the task time per node Tωi , battery consumption rate ei, 572

and battery recharging time Tc. It takes Tωi time for each 573

robot to complete the sowing task on one node, and the 574

battery capacity of each robot is consumed as much as ei 575

while performing the task. In addition, when the battery 576

is completely consumed while the robot performs the task, 577

it consumes Tc battery charging time and performs the task 578
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FIGURE 5. Experimental setup for evaluation: (a) Top view image of experimental environment, (b) Overall experimental environment and configuration.

TABLE 1. Experimental parameters of heterogeneous robots.

again after charging is complete. The experiments were579

conducted for both non-optimized (σ = ϕ = ζ ) and580

optimized (σ ̸= ϕ ̸= ζ ) cases to evaluate the optimization581

workspace of the proposed algorithm. Each UGV is driven582

through a headland pattern using the one-way method, which583

is a conventional tractor driving method in [52].584

The experiments were conducted to evaluate the scalabil-585

ity, adaptability, and efficiency of the proposed algorithm586

through numerical verification and field evaluation. Both587

evaluations are performed based on images acquired through588

UAV in the same environment. The numerical validation589

is performed to verify the smooth applicability to field590

experiments and the scalability to variousmodels (platforms).591

The field evaluation is performed to verify the applicability592

and efficiency of the proposed algorithm by applying it to real 593

environments and robots based on the numerical validation 594

results. 595

B. PERFORMANCE METRICS 596

We used three performance metrics to evaluate the proposed 597

isotemporal task allocation system. The performance metrics 598

are the number of nodes allocated per robot Ni, the 599

total task time Ttotal , and the cumulative task time Tcum. 600

These key performance metrics are designed to quantita- 601

tively evaluate the workload balancing and task execution 602

efficiency. 603

The metric Ni is employed to verify that task allocation 604

is proportionally distributed based on the performance 605
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capabilities and operational states of each robot, ensuring606

an equitable workload distribution. This metric is formally607

defined as follows:608

Ni =
∑

piallocated (16)609

where piallocated represents task nodes allocated to the i-th sub-610

workspace. This metric quantitatively evaluates the workload611

allocated through the workspace partitioning. The difference612

in Ni between robots represents the workload balancing613

allocated to each robot, and robots with higher performance,614

such as task processing efficiency, are allocated more tasks615

for a balanced workload.616

Themetric Ttotal quantifies the maximum time it takes for a617

robot to complete an allocated task, effectively measuring the618

efficiency of the proposed system performance. This metric619

is defined as follows:620

Ttotal = max(T1,T2, . . . ,Ti) (17)621

where Ti denotes the task completion time of the i-th622

robot. Since Ttotal is defined as the latest task com-623

pletion time among all robots, it is an important indi-624

cator to determine whether the proposed task allocation625

algorithm optimally distributes the workload allocated626

to each robot. The lower the value of Ttotal , the bet-627

ter the performance of the proposed system, and min-628

imizing the value of Ttotal ensures optimal workload629

distribution.630

The metric Tcum measures the overall system workload by631

summing the task completion times of each robot. Tcum can632

be used to evaluate the balancing of task distribution and633

resource allocation efficiency for all robots. This metric is634

formally defined as follows:635

Tcum =
k∑
i=1

Ti (18)636

where Tcum is defined as the sum of the task times of all637

robots. A lower value of Tcum indicates higher task efficiency.638

However, it is difficult to evaluate the task distribution639

balancing of the proposed systemwith only the value of Tcum,640

so it is evaluated through the standard deviation of the task641

time. A lower standard deviation indicates a more balanced642

workload distribution. In addition, the task time ratio repre-643

sented by Tcum is evaluated in terms of how proportionally644

the workload is distributed among the robots. Considering645

these factors comprehensively, it directly reflects the ability646

of the system to achieve balanced workload distribution, and647

can effectively evaluate the performance of the proposed648

algorithm.649

V. EXPERIMENTAL RESULTS650

To evaluate the performance of the proposed system, numer-651

ical validation and field evaluation were performed. This652

evaluation evaluated the effectiveness of the isotemporal task653

allocation strategy in optimizing task execution and workload654

distribution in an autonomous robot fleet. By maintaining655

TABLE 2. The results of isotemporal task allocation parameters.

consistency in experimental parameters, the adaptability, 656

scalability, and efficiency of the proposed method were 657

verified by directly comparing the simulated performance 658

with the actual performance. 659

The results of the isotemporal task allocation are shown 660

in Table 2. These results were derived through an opti- 661

mization procedure that iteratively adjusted gain factors 662

based on given performance data to minimize total oper- 663

ation time. In the experimental setup, the relatively small 664

workspace compared to real-world environments reduced 665

the contribution of fuel and battery factors, while veloc- 666

ity contributed most by directly reducing movement and 667

operation times in sub-workspaces. Through the optimized 668

gain coefficients, the gain coefficients for fuel and battery 669

capacity showed the lowest values, which means that 670

fuel and battery capacity had the least influence on the 671

task time. On the other hand, the gain coefficient values 672

for velocity showed the highest values, which shows 673

that the velocity had the greatest influence on the task 674

time. 675

A. NUMERICAL VALIDATION 676

We performed numerical validations to evaluate the perfor- 677

mance, scalability, and stability of the proposed isotemporal 678

task allocation system in simulations based on real envi- 679

ronments. The numerical verification has been performed 680

previously in our previous work [53], and this subsection 681

reviews the results. We evaluated the performance of the 682

proposed system by optimizing the workspace partitioning 683

and balancing the workload distribution in a heterogeneous 684

autonomous robot fleet using the proposedmethod. As shown 685

in Fig. 6, we compare the optimized and non-optimized cases 686

to confirm that the gain factor plays an important role in 687

improving the overall system efficiency, and we verify the 688

scalability and stability of the proposed isotemporal task allo- 689

cation system. Each color (red, green, and blue) represents the 690

workspaces allocated to robots r1, r2, and r3, respectively. 691

Furthermore, the dotted lines in Fig. 6 represent the actual 692

paths traveled by each robot in the simulation. Although 693

some paths overlapped due to the tractor’s driving charac- 694

teristics, the simulation confirmed smooth operation without 695

collisions. 696

As shown in Table 3, r1 is allocated the most nodes, 697

while r2 is allocated the least task nodes. This means that 698

r1 has the highest performance among the three robots, while 699

r2 has the lowest performance. The Ttotal of the proposed 700

system is reduced by 29.82%. This reduction indicates that 701
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FIGURE 6. Comparsion of numerical validation for the proposed system performance: (a) Non-optimized isotemporal task allocation in
numerical simulation, (b) Optimized isotemporal task allocation in numerical simulation.

TABLE 3. Experimental results of the numerical validation.

FIGURE 7. Comparsion of field evaluation for the proposed system performance: (a) Non-optimized isotemporal task allocation in real
environment, (b) Optimized isotemporal task allocation in real environment.

TABLE 4. Experimental results in open field environment.

the proposed isotemporal task allocation scheme improves702

the cooperative task of the fleet system by minimizing the703

task time difference between the robots. The Tcum of the704

proposed system is reduced by 7.78%, which indicates that 705

the proposed method improves the workload balance to some 706

extent. This result may mean that the performance of the 707
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proposed system is not very good, but as mentioned earlier,708

this indicator should consider additional factors. As shown709

in the results of previous studies [53], the slope of the710

Tcum graph in the optimized scenario is more constant and711

linear than that in the non-optimized case. Specifically,712

the proposed system showed a 93.65% reduction in sd .713

This result means that the proposed task allocation system714

minimized the difference in task completion times of all715

robots. The consistency of each task time indicates that716

the proposed system distributed the task time more evenly717

among all robots, preventing unnecessary time waste by718

allowing some robots to complete the task faster than719

others.720

The results of numerical validation showed that the721

proposed system efficiently performed tasks by allocating722

appropriate workloads to robots with different performances723

and states and minimizing unnecessary task time. In the non-724

optimized case, the workspace was partitioned differentially,725

but it caused a lot of unnecessary waiting time until726

the highest performing robot completed all tasks and the727

lowest performing robot completed them. Numerically, the728

highest performing robot had to wait for the remaining729

time after performing the same task again. However, in the730

optimized case, all task times were performed within 2 min-731

utes, minimizing unnecessary waiting time. These results732

of numerical validation showed that the proposed system733

can be applied to various platforms and can perform tasks734

efficiently.735

B. FIELD EVALUATION736

We conducted a field evaluation to evaluate the performance,737

reliability, and adaptability of the proposed isotemporal task738

allocation algorithm in a real agricultural environment. The739

field evaluation evaluated the proposed system adaptability in740

a real agricultural environment and the reliability that was not741

different from the numerical verification results. As shown in742

Fig. 7, similar to the numerical validation, we verified the743

performance of the proposed system in terms of workload744

distribution and system adaptability through comparative745

analysis of the non-optimized and optimized cases. Similar746

to Figure 6, each color (red, green, and blue) represents the747

workspaces allocated to robots r1, r2, and r3, respectively.748

Although the robots’ movement paths are not separately dis-749

played in Fig. 7, the simulation results were similar to those750

in Fig. 6, confirming that all robots moved stably and without751

collisions.752

The results of the field evaluation are presented in753

Table 4, which are similar to the results of the numerical754

verification. It shows that the most nodes are allocated to755

the best performing r1, and the least nodes are allocated756

to the worst performing r2. In the optimized case, we con-757

firmed the effect of the gain factor, which significantly758

minimizes the difference in task time and equalizes the759

task completion times of all robots. Ttotal also shows760

a significant reduction. In the optimized case, Ttotal is761

reduced by about 25.88%. In addition, Tcum is reduced by762

5.82%, and sd is significantly reduced by 92.89%. This 763

indicates that the proposed system’s workspace partitioning 764

effectively integrates important performance indicators such 765

as velocity, battery capacity, and initial positioning in a 766

real environment, thereby ensuring a balanced workload 767

distribution among robots with different performances and 768

states. 769

The numerical verification and field evaluation of the 770

proposed system under the same conditions showed similar 771

results. The Ni showed very minor differences, and the Ttotal 772

showed relative errors of 2.39% and 7.43% for each case. 773

Similarly, the Tcum showed relative errors of 5.45% and 774

7.42% for each case, and the sd showed relative errors of 775

6.36% and 0.04% for each case. These results demonstrate 776

that the proposed system maintains high consistency and 777

performance in real environments and numerical simulations. 778

Therefore, it can be directly applied to real environments and 779

platforms through realistic environment and platform based 780

simulations, and can show stable and high accuracy. Through 781

these experiments, we demonstrate the practical applicability 782

of the proposed system to real agricultural environments 783

and platforms, and highlight its potential to enhance the 784

scalability, adaptability, and efficiency of MRS in precision 785

agriculture. 786

VI. DISCUSSION 787

A. NODE MAP GENERATION 788

The proposed system is designed to be scalable to various 789

tasks. In this study, we applied the proposed system to the 790

sowing system and conducted experiments. However, not all 791

tasks can set up and perform these experimental environments 792

in the same way. In particular, in the orchard environment, 793

the task points are trees during harvesting or spraying task. 794

However, it is still difficult to apply because trees act as 795

obstacles rather than task points during driving. Nevertheless, 796

the proposed system can be applied in other ways. For 797

example, in the case of spraying task, data can be provided 798

in an environment suitable for generating paths between 799

nodes through node map generation. Therefore, by integrat- 800

ing the node map generation research applicable to each 801

agricultural task, widely applicable task allocation can be 802

performed. 803

B. PATH PLANNING 804

The proposed system has been proven through experiments to 805

perform optimal tasks.Multi-UGV are allocated to task nodes 806

and simply follow them. This method should consider the 807

path through the dynamic structure of the platform, especially 808

the tractor, for the rotation to move to the next row or 809

column. For the robots (scout, husky) used in this study, path 810

planning for tractor rotation is not required. However, for 811

application to actual tractors, task allocation studies including 812

path planning considering the structure of the platform are 813

required. Additionally, because the terrain where work is 814

performed in agriculture is an unstructured environment, 815
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a path planning algorithm that takes into account factors816

such as traversability is required. An autonomous tractor fleet817

system that integrates these studies will be able to perform818

more optimal agricultural tasks.819

C. PERFMANCE AND STATE PARAMETER SETTING820

The proposed task allocation system is implemented by821

considering the platform performance and current state.822

However, in the actual tasking environment, there are many823

parameters that need to be considered for the tractor and824

the surrounding environment. In order to achieve optimal825

task allocation, all parameters must be considered for826

task distribution. In addition, other parameter settings are827

required depending on the environment. Furthermore, the828

addition of multiple variables can lead to weight calcu-829

lation distortions due to differences in units and ranges.830

To address this issue, additional normalization techniques831

are required to calculate weights. This approach can perform832

appropriate task allocation for various environments and833

platforms.834

D. DIRECTIONS FOR FUTURE WORK835

The insights gained from this study suggest several avenues836

for advancing agricultural robotic systems. The proposed837

concurrent task allocation algorithm is generalizable and838

can be applied to a wider range of contexts. Despite839

adopting simple parameters, this study demonstrates that840

the proposed algorithm can be effectively applied to het-841

erogeneous swarm tractor or robot control. Future research842

can aim to develop quantitative performance metrics for843

practical validation by evaluating parameters for real-world844

platforms and terrains, task completion efficiency, pre-845

cision through repeated experiments, performance supe-846

riority through comparisons with other task allocation847

algorithms, and adaptability to diverse environments and848

tasks.849

Performance validation in large-scale robot fleets and850

extensive experimental environments is crucial to ensuring851

the scalability and robustness of the proposed algorithm.852

Furthermore, the addition of metrics that affect performance853

and state parameter settings in real-world tasks plays a crucial854

role in verifying the performance of the proposed algorithm855

more clearly. Developing systematic normalization or scaling856

methods for these heterogeneous metrics will improve the857

interpretability and consistency of multi-robot task alloca-858

tion. Performance evaluations will expand beyond the current859

metrics and allow for a more comprehensive evaluation860

through comparisons with other task allocation algorithms.861

By addressing these limitations, future research could862

improve the robustness, scalability, and practical applicability863

of the proposed approach to real-world agricultural robot864

fleets.865

VII. CONCLUSION866

This study proposes a Voronoi-based isotemporal task867

allocation system for autonomous tractor fleet. It is designed868

to derive optimal weights by reflecting the performance 869

and state importance of each robot and efficiently partition 870

the workspace. Performance and state are evaluated based 871

on parameters such as distance, velocity, and capacity, 872

including the number of allocated nodes, total work time, 873

and accumulated work time. Comparing the pre- and post- 874

optimization results, we confirmed that equalizing work 875

times can reduce waiting times and improve agricultural work 876

efficiency. Furthermore, numerical validation and field evalu- 877

ations demonstrate the applicability and practical utility of the 878

proposed algorithm. These results demonstrate its potential 879

for extension to various tractor-based collaborative work 880

models. 881

In the future, we would like to extend the current 882

research to more complex and various scenarios. The 883

currently proposed algorithm is designed for a simple 884

scenario without obstacles. Considering the influence of the 885

surrounding environment and obstacles in the task allocation 886

algorithm is one of our main research tasks. Therefore, the 887

proposed task allocation algorithm can be further integrated 888

with SLAM and path planning algorithms to perform an 889

improved task allocation system for autonomous tractor fleet 890

systems. 891
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