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 A B S T R A C T

This study proposes a method to estimate the 6D pose of pedicels using the morphological features of fruits and 
vegetables. The pedicel, a critical element connecting fruits to their stems, significantly influences the precision 
and efficiency of agricultural harvesting robots. The proposed system employs 3D point cloud data obtained 
from RGB-D cameras, using differences in width and curvature to identify the location and orientation of the 
pedicel. A lightweight YOLOv8n-seg architecture is employed to detect fruits and vegetables, computing the 
local curvature to estimate pedicel positions. The experimental evaluations on tomatoes and Cucumis melo (C. 
melo) demonstrate the capability of the proposed system to handle diverse agricultural environments. For C. 
melo, the system achieved a precision of 0.927, recall of 0.809 and F1-score of 0.864. For tomatoes, precision 
and recall were both 0.837, resulting in an F1-score of 0.837. Positional errors along the 𝑥-, 𝑦- and 𝑧-axes 
averaged 1.34, 3.19 and 4.79 mm , respectively, for the C. melo, with corresponding root mean squared errors 
of 7.95, 5.46 and 5.13 mm. Orientational errors averaged 2.14◦, 1.14◦ and -1.49◦ for 𝜙, 𝜃 and 𝜓 , respectively. 
Smoothing algorithms, including linear interpolation for translation and spherical linear interpolation for 
rotation, address positional and orientational instability, further enhancing trajectory precision. The system 
achieved real-time operation with a processing speed exceeding 20 fps with smoothing, making it suitable for 
dynamic agricultural tasks. The results highlight the robust performance of the system in accurately identifying 
and approaching pedicels, even in occluded or clustered conditions.
1. Introduction

Smart agriculture and digital agriculture have emerged as critical 
solutions to address global food shortages stemming from complex 
challenges, such as the declining agricultural workforce, reduced la-
bor availability due to ageing populations, and the increasing unpre-
dictability in cultivation caused by climate change [1–3]. Among the 
numerous tasks in agriculture, harvesting remains one of the most 
labor-intensive processes, prompting significant attention to developing 
robotic solutions to alleviate these challenges. As the global demand 
for food continues to surge, an urgent need exists to enhance the 
productivity and precision of harvesting operations [4,5]. Traditional 
manual harvesting methods, while effective, require substantial labor 
and are often unable to keep pace with the growing food demands of an 
expanding population [3]. This imbalance underscores the necessity for 
innovative technology, such as autonomous harvesting robots, which 
promise to reduce the reliance on manual labor and increase harvesting 
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efficiency and accuracy [6,7]. The development of such robots is crit-
ical in the context of global agricultural sustainability. By integrating 
advanced technology into harvesting systems, these robots can adapt to 
diverse agricultural environments, address labor shortages and mitigate 
the effects of climate variability on fruit and vegetable production.

Building on prior research, the authors previously introduced a 
human-centered approach for achieving efficient cucumber harvest-
ing [8] (Fig.  1). This method focuses on replicating human tech-
niques to construct a system capable of optimized harvesting. Harvest-
ing robots offer promising solutions for labor-intensive tasks but face 
unique challenges. Unlike manufactured products, fruits and vegetables 
display significant form, size and color variability, making accurate 
target detection and pose estimation essential [9–11]. Thus, the cor-
nerstone of developing an effective harvesting robot lies in its ability 
to detect targets and precisely estimate their poses [6,12,13].

Moreover, the environment in which harvesting robots operate is 
unpredictable and unstructured [14]. Even fruits of the same type 
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Fig. 1. Previous harvesting robot system [8].

can exhibit considerable variations in shape and color [15]. Recent 
advancements in fruit detection have applied deep learning techniques 
to address these challenges, demonstrating validated improvements 
in technology and performance. For example, a U-net-based amodal 
segmentation model successfully processed occluded cucumber images, 
achieving an inference time of 198 ms per image [16]. Similarly, 
the You Only Look Once (YOLO) model was applied for real-time 
muskmelon detection, achieving an impressive average precision of 
89.6% at a detection speed of 96.3 fps [17]. Furthermore, the LedNet 
model was applied for real-time apple detection, achieving 85.3% 
accuracy with an inference time of just 28 ms [18].

Despite these advances in fruit detection, the successful deployment 
of harvesting robots also hinges on precise pose estimation methods. 
The end-effector (EE) must cut the pedicel—the stem that supports the 
fruit or vegetable [19]. This requirement becomes especially critical 
when fruits are suspended from trees or vines and subject to natural 
motion, further complicating accurate pose estimation.

One study [20] use the relationship between the tomato and the 
sepal of the tomato to estimate its pose; however, estimating the pose of 
every tomato based on the visibility of the tomato is not always feasible. 
The other study [21] proposed a visual detection and pose classification 
algorithm based on improved YOLOv5, which achieves the detection 
of tomato bunches and tomatoes, the judgment of whether tomatoes 
are occluded, and the maturity and 3D pose classification of tomatoes. 
In [22], the proposed YOLOv10-pose-based keypoint and bounding box 
detection were combined for strawberry stem pose detection tasks. The 
YOLOv10-pose-based model achieved fast post-processing for straw-
berry stem pose estimation but had relatively low detection accuracy. 
These studies focused solely on static pose estimation and did not 
address the task of dynamic fruit and vegetable species, which is crucial 
for autonomous harvesting applications.

Pedicel pose estimation itself poses multiple challenges. First,
pedicels are typically small and thin, making them difficult to distin-
guish visually from overlapping leaves, branches, and other fruits. This 
visual ambiguity is especially problematic in dynamic and cluttered 
agricultural settings. Second, pedicel morphology varies widely across 
fruit and vegetable species, necessitating highly adaptable algorithms. 
A single, uniform detection framework can be inadequate because 
pedicels differ in size, shape, and structural characteristics from one 
crop to another. Robust detection and pose estimation algorithms must 
incorporate advanced detection frameworks, high-precision tracking, 
and adaptive methods to ensure consistent performance under various 
conditions.
2 
A previously developed pedicel-detection system using fast point 
feature histograms (FPFH) offered precise 6D pose estimates at close 
range [19]. The FPFH method effectively captures geometric features, 
enabling precise pose estimation even under complex environmental 
conditions, such as occlusion or varied lighting. This technique has 
proven dependable for addressing the intricacies associated with pedi-
cel detection. However, despite its accuracy, the FPFH-based system 
encounters significant limitations regarding practicality and scalabil-
ity. A critical drawback of the method is its dependence on manual 
parameter tuning to accommodate the diverse morphological character-
istics of fruits and vegetables. This labor-intensive and time-consuming 
process hinders its efficiency in large-scale agricultural applications. 
These limitations underscore the need for a more adaptable, efficient 
pedicel pose estimation framework. Such a framework would eliminate 
the dependency on manual adjustments, accommodate diverse fruit 
morphologies and streamline harvesting across diverse agricultural 
environments. Addressing these challenges is crucial for advancing 
the capabilities of autonomous harvesting systems and ensuring their 
broader applicability in advanced agriculture.

This study aims to develop a robust method for estimating the 
6D pose of pedicels in fruits and vegetables using 3D point cloud 
data. An efficient and versatile harvesting robot system is designed to 
employ the morphological features of fruits and vegetables. A critical 
morphological characteristic is the abrupt curvature at the junction 
where the fruit attaches to the pedicel. This curvature arises from the 
distinct structural differences between them: fruits grow larger and 
softer to store nutrients and protect seeds, whereas pedicels become 
thinner and stronger to support the fruit [23,24]. This contrast in size 
and strength creates a pronounced width disparity, forming a curvature 
that is critical for identifying and estimating the pedicel pose.

The remainder of this paper is structured as follows. Section 2 
describes the morphological features of fruits and vegetables and the 
framework for 6D pose estimation. In addition, it details the experi-
ments to evaluate the proposed system and analyze the results. Sec-
tion 3 provides a detailed analysis of the results and a comprehensive 
overview of the problems and improvements identified during the ex-
periment. Finally, this paper concludes with a summary of the findings 
and outlines future research.

1.1. Contribution and novelty

The primary contributions and novelty of this study are summarized 
below.

1. The proposed system applies the morphological features of fruits 
and vegetables, enabling accurate and complex 6D pose esti-
mation of the pedicel via lightweight deep learning without 
additional training.

2. The proposed system can estimate pedicel poses once fruits and 
vegetables are detected, offering versatility and broad applica-
bility to diverse produce.

3. The proposed system achieves low inference time while perform-
ing complex 6D pose estimations.

4. The performance of the proposed system was evaluated via 
experiments, and this work discusses the problems encountered 
during the experiments and their supplements.

1.2. Related work

This critical 6D pose estimation technology enables harvesting 
robots to identify the position and orientation of fruits and their 
pedicels accurately. This capability allows robots to harvest fruits 
without causing damage, significantly enhancing the accuracy and 
efficiency of the harvesting process. The importance of this technol-
ogy is pronounced in complex agricultural environments where fruits 
vary in size, shape and position. By enabling stable operations in the 
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face of irregular fruit features and environmental variability, 6D pose 
estimation is indispensable for advancing autonomous harvesting tasks.

Several studies have explored the application of 6D pose estimation 
in harvesting robots, focusing on specific fruits, such as tomatoes [25], 
cucumbers [8,19], graphs [26] and peppers [27,28]. Early approaches 
involved setting a region of interest (ROI) on a specific part of the 
target and using 3D point cloud data from that area to estimate the 6D 
pose of the pedicel. For example, the YOLOv4-Tiny and YOLACT++ 
networks have been employed in tomato-pedicel detection and pose 
estimation in greenhouse environments. This two-stage method used 
long-distance image capturing for preliminary detection, followed by 
a detailed analysis at close range, ensuring precision in identifying 
the cutting points for harvesting [29]. Similarly, cucumber-harvesting 
research has employed the YOLACT++ deep learning network for 
segmentation, improving detection under various depths and occlusions 
using F-RGBD data [30]. Another study focused on grape harvesting, 
applying deep learning for pedicel detection and accurate 6D pose 
estimation of cutting points to optimize harvesting efficiency [31].

Beyond tomato, cucumber, and grape studies, several recent
computer-vision (CV) works further demonstrate how specialized net-
work designs improve detection or cutting-point localization for other 
crops. For example, an enhanced cycle-GAN was trained to convert low-
illumination pineapple images into day-like appearances and achieved 
robust nighttime detection in orchards [32]. A spatio-temporal CNN 
was later proposed to track and pick pineapples with an unmanned 
robot platform, fusing temporal cues to reduce false positives in clut-
tered scenes [33]. Finally, a geometry-aware point-cloud network lear-
ned explicit 3D shape priors to predict precise cutting points of fruits in 
unstructured field environments, outperforming conventional RGB-only 
models [34]. These studies showing that task-specific CV architectures-
whether image-to-image translation, temporal fusion, or 3D geometric 
reasoning-can substantially enhance detection reliability under chal-
lenging agricultural conditions.

Recent advancements in 6D pose estimation have introduced deep-
learning approaches for fruit size and maturity. For instance, the Deep-
ToMaToS network simultaneously classifies tomato ripeness and esti-
mates the 6D poses of the side pedicels, offering a three-stage clas-
sification system that significantly improves harvesting accuracy and 
efficiency [35]. Despite these advances, their generalizability across 
diverse fruits and vegetables remains challenging. Studies often target 
specific fruits, such as tomatoes [29] or cucumbers [30], limiting their 
broader applicability. Although methods like those described above 
have demonstrated high performance in controlled environments, their 
adaptability to varied agricultural settings and diverse produce vari-
eties has not been completely validated. The limitations of existing ap-
proaches highlight the need for innovative methods extending beyond 
traditional 6D pose estimation.

Recent progress outside agriculture also offers useful insight. Public 
benchmarks such as LineMOD, YCB-Video and BOP have driven a rapid 
evolution of generic 6D pose networks. Point-based voting models like 
PVN3D [36] and its improved version FFB6D [37] use RGB-D input 
and vote for keypoints in 3D space. CosyPose matches multi-view RGB 
detections and refines them by photometric optimization [38]. GDR-
Net adds explicit geometry cues to a coarse-to-fine regressor and boosts 
robustness under occlusion [39]. These generic methods, however, 
assume textured industrial parts and a pre-existing CAD mesh. Glossy 
produce often lacks texture, and CAD models of growing fruit are hard 
to obtain. Heavy training and mesh pre-processing are also impracti-
cal for on-farm deployment. Therefore a lightweight, geometry-driven 
approach is still needed for in-field robots.

The proposed 6D pedicel pose estimation (6DPPE) system addresses 
this gap by applying the morphological features of fruits and vegeta-
bles. Specifically, the curvature at the junction between the fruit and 
the pedicel is a stable cue across species. By exploiting this feature, the 
system provides a versatile solution without any CAD model or addi-
tional training, enhancing the precision and efficiency of autonomous 
harvesting in varied agricultural environments.
3 
Table 1
Quantitative analysis of pedicel–fruit geometry.
 Fruit type 𝑛 Diameter [mm] 𝑑ped∕𝑑fruit(mean± SD) 
 Fruit body Pedicel  
 Cucumber 50 38.7±4.1 2.44±0.31 0.063±0.008  
 C. melo 50 63.4±5.7 2.60±0.39 0.041±0.006  
 Tomato 50 48.2±4.9 2.66±0.34 0.055±0.007  

2. Materials and methods

2.1. Pedicel morphological features of fruits and vegetables

Fruits and vegetables are morphologically characterized by an abrupt
curvature 𝜅, at the junction where the fruit attaches to the pedicel. 
This curvature arises due to the structural differences between the 
fruit and pedicel. Fruits typically grow larger and softer to store water 
and nutrients and protect seeds [23,24], whereas pedicels develop a 
stronger and thinner structure to support the fruit and endure external 
environmental stresses. For each fruit type (𝑛 = 50 per class) we first 
measured the maximum transverse diameter of the fruit body and 
the stem-like pedicel. The pedicel-to-fruit diameter ratio 𝑑ped∕𝑑fruit is 
narrowly bounded between 4.1% and 6.3%, indicating that the pedicel 
is always an order of magnitude thinner than the fruit, irrespective of 
overall size (Table  1).

This structural disparity creates a significant width difference be-
tween the fruit, 𝑂𝑓𝑟𝑢𝑖𝑡 and pedicel, resulting in the 𝜅 curvature at 
their junction. As Fig.  2 illustrates, this 𝜅 curvature is a universal 
feature observed across various fruits, including cucumbers, C. melo, 
and tomatoes. It is a critical marker for harvesting robots to identify 
the pedicel-fruit junction accurately, ensuring precise and efficient 
harvesting operations.

2.2. Proposed 6D pedicel pose estimation

The flowchart in Fig.  3 presents a comprehensive pipeline for a har-
vesting robot system, integrating 6D pose estimation and an approach 
to achieve efficient and precise harvesting. In Fig.  4, the system begins 
by processing input data from RGB-D cameras to generate 2D images 
and 3D point clouds. Fruits and vegetables are detected, segmented and 
analyzed using YOLOv8 to extract features, such as contours, bound-
ing boxes and angles. The 6D pose estimation module reconstructs 
the 3D environment and calculates local curvatures via eigenvalue 
decomposition. Then, the module identifies the pedicel by evaluating 
the 𝜅 threshold value 𝜅𝑑 , and creates a pedicel transformation matrix 
for precise alignment. In this study, the 𝜅𝑑 is empirically chosen to 
separate the pedicel region from the fruit body based on curvature 
characteristics. This threshold is consistently applied to all experiments 
involving both tomato and C. melo. Finally, the robot uses the estimated 
6D pose to perform visual servoing, guiding its EE to align with the 
pedicel, ensuring smooth and accurate harvesting of diverse fruits and 
vegetables.

2.2.1. Fruit detection
Nonuniform features characterize the growth environment for har-

vesting fruits, comprising a complex setting with diverse elements such 
as stems and leaves. Therefore, the system must detect fruits even 
under cluttered surroundings. Here, the YOLOv8n-seg architecture is 
employed for efficient fruit detection using the collected images.

Since the original you only look once (YOLO) detector was released, 
successive versions have steadily improved accuracy-speed trade-offs 
while keeping a real-time design philosophy. YOLOv5 introduced an 
easy-to-train PyTorch codebase and four size variants (s/m/l/x) for dif-
ferent hardware budgets. YOLOv6 and YOLOv7 refined the backbone–
neck design and added heads for key-point and instance segmentation. 
YOLOv8 adopted in this study uses decoupled heads, an anchor-free 
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Fig. 2. Pedicel morphological features of fruits and vegetables: (a) cucumber, (b) C. melo and (c) tomato.
Fig. 3. Flow chart of 6D pedicel pose estimation (6DPPE).
Fig. 4. Configuration of 6D pedicel pose estimation (6DPPE).
predictor, and native -seg branches, reaching higher AP while main-
taining ≥ 100 FPS on an RTX-30 GPU. The YOLOv9 adds neural-
architecture-search backbones and distillation, pushing COCO AP past 
57% at similar latency.

Despite these gains, YOLOv8n-seg offers the best trade-off for our 
robot: 1) only 3.2 M parameters and 2) built-in instance-segmentation. 
Hence, we select YOLOv8n-seg as the baseline detector, although 
the rest of our pose-estimation pipeline is modular and can swap in 
YOLOv9 or future models by changing only the detection backbone.

Unlike many studies that fine-tune a pre-trained backbone, our 
network was trained from scratch. The training set comprised 400 
manually annotated RGB images acquired in two commercial green-
houses: 200 cucumber images and 200 C. melo (oriental melon) images. 
These images span a wide range of lighting conditions (early-morning, 
4 
midday, late-afternoon), viewpoints (0–45◦ off-axis), and occlusion 
levels (leaf/stem overlap from 0% to > 40%), providing diversity for 
segmentation. All images were hand-labeled with pixel-wise masks; 
80%/10%/10% train/val/test split. 300 epochs, SGD (lr = 0.01, mo-
mentum = 0.937), batch = 16, data-augmentation (mosaic, random flip, 
color jitter). This model uses pixel-wise masks to segment objects from 
the background, enabling simultaneous prediction of bounding boxes 
and class probabilities. The resulting model reaches 92.4% AP on the 
test set.

After detecting 𝑂fruit, the next step is to extract features related 
to the approximate pedicel location from the 2D image (Fig.  5). In 
the image plane 𝐼 , each detected fruit 𝑂fruit is initially segmented 
using YOLOv8n-seg, which provides a segmentation mask 𝑚𝑖. While 
YOLOv8n-seg also produces an axis-aligned bounding box, we do not 
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Fig. 5. Workflow of the fruit detection. After detecting fruits using YOLOv8n-seg 
and obtaining the segmentation mask 𝑚𝑖, the outer contour 𝐶𝑖 is extracted through 
morphological analysis. Based on this contour, a rotated minimum-area bounding box 
𝑏𝑖 is computed to represent the orientation and extent of the fruit more accurately than 
the axis-aligned box provided by YOLO.

use this output. Instead, the bounding box 𝑏𝑖 used in this study is 
computed independently by the authors using a minimum-area rotated 
rectangle that encloses the object contour 𝐶𝑖 extracted from 𝑚𝑖. This 
approach enables more accurate estimation of fruit orientation, espe-
cially for non-circular or elongated fruits. To obtain 𝐶𝑖, we convert 
𝑚𝑖 to a binary image and apply morphological analysis to extract the 
boundary pixels that define the outer contour of the segmented object. 
These pixels form the set 𝐶𝑖 for each object 𝑖.

A rotated 𝑏𝑖 (the minimum-area rectangle) enclosing 𝐶𝑖 is deter-
mined. Let 𝐬𝑘 = (𝑥𝑘, 𝑦𝑘) (𝑘 ∈ {1, 2, 3, 4}) be the four vertices of 𝑏𝑖. To 
handle rotation by an angle 𝜃𝐼  (in the image coordinate system), the 
new coordinates (𝑥′𝑖,𝑘, 𝑦′𝑖,𝑘) are computed as: 
{

𝑥′𝑖,𝑘 = 𝑥𝑖,𝑘 cos 𝜃𝐼 + 𝑦𝑖,𝑘 sin 𝜃𝐼 ,
𝑦′𝑖,𝑘 = −𝑥𝑖,𝑘 sin 𝜃𝐼 + 𝑦𝑖,𝑘 cos 𝜃𝐼 ,

(1)

where 𝜃𝐼  is chosen to minimize the area of the bounding box in the 
rotated space.

Next, we find the minimum and maximum of each axis: 
{

𝑥min(𝜃𝐼 ) = min𝑘(𝑥′𝑖,𝑘), 𝑥max(𝜃𝐼 ) = max𝑘(𝑥′𝑖,𝑘),
𝑦min(𝜃𝐼 ) = min𝑘(𝑦′𝑖,𝑘), 𝑦max(𝜃𝐼 ) = max𝑘(𝑦′𝑖,𝑘).

(2)

Thus, the width 𝑤(𝜃𝐼 ) and height ℎ(𝜃𝐼 ) of the rotated 𝑏𝑖 become 
{

𝑤(𝜃𝐼 ) = 𝑥max(𝜃𝐼 ) − 𝑥min(𝜃𝐼 ),
ℎ(𝜃𝐼 ) = 𝑦max(𝜃𝐼 ) − 𝑦min(𝜃𝐼 ).

(3)

We calculate the centroid 𝑐𝑐 = (𝑥𝑐 , 𝑦𝑐 ) of 𝑏𝑖 (or equivalently, the 
fruit’s contour) by averaging all contour points: 
{

𝑥𝑐 = 1
𝑛
∑𝑛
𝑘=1 𝑥𝑖,𝑘,

𝑦𝑐 = 1
𝑛
∑𝑛
𝑘=1 𝑦𝑖,𝑘.

(4)

Once 𝜃𝑖 that minimizes the bounding box area is found, we align the 
box with the chosen orientation. To approximate the pedicel location, 
we identify the top edge of 𝑏𝑖 by selecting the two vertices with the 
smallest 𝑦-coordinates: 

𝐬 , 𝐬 = argmin 𝑦 . (5)
1 2 𝑘 𝑘

5 
The midpoint of this edge, 𝐩𝑐 , is given by: 

𝐩𝑐 =
(

𝑥1 + 𝑥2
2

,
𝑦1 + 𝑦2

2

)

. (6)

This method assumes that the pedicel appears near the upper side of 
the fruit in the image. This assumption is grounded in the experimental 
setup, where fruits were suspended from branches and the camera 
was positioned below the EE. Under these conditions, the pedicel was 
most often oriented upward in the image plane due to the natural 
gravity-induced hanging posture of the fruit.

2.2.2. 6D pose estimation
The first step in 6D pose estimation is 3D reconstruction. The 2D 

pedicel location 𝐩𝑐 = (𝑢𝑝, 𝑣𝑝) is lifted to 3D by combining the pixel 
coordinates with the depth value measured by the RGB-D sensor and 
the intrinsic camera parameters (Fig.  6). Given the pixel coordinate 
(𝑢𝑝, 𝑣𝑝) and its associated scalar depth value 𝑇𝑑 returned by the RGB–D 
camera (i.e., the 𝑍-component at that pixel), the 3D point 𝐏𝑝 in the 
camera coordinate frame is obtained as

𝐏𝑝 =
⎡

⎢

⎢

⎢

⎣

𝑋𝑝

𝑌𝑝
𝑍𝑝

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

(𝑢𝑝 − 𝑢0) ⋅
𝑇𝑑
𝑓𝑥

(𝑣𝑝 − 𝑣0) ⋅
𝑇𝑑
𝑓𝑦

𝑇𝑑

⎤

⎥

⎥

⎥

⎥

⎦

. (7)

Let (𝑢0, 𝑣0) denote the principal point and (𝑓𝑥, 𝑓𝑦) the focal lengths. 
The depth at pixel (𝑢𝑝, 𝑣𝑝) is 𝑇𝑑 . Eq. (7) maps this pixel to the 3D 
point 𝐏𝑝 = (𝑋𝑝, 𝑌𝑝, 𝑍𝑝)𝖳. The region of interest (ROI) is defined as 
𝑝roi = {𝐏 ∣ ‖𝐏 − 𝐏𝑝‖ ≤ 𝑟}. Thus, 𝑝roi is a single set of points around the 
𝐏𝑝, not a collection of separate point clouds. Fig.  4 shows an example 
ROI, which is used in the subsequent curvature analysis.

The second step is curvature computation. For each point 𝑝𝑖 ∈ 𝑝roi
we estimate a surface normal from its neighborhood. Up to 𝑘 nearest 
neighbors inside the radius 𝑟 are used: 
 (𝑝𝑖) = {𝑝𝑗 ∣ ‖𝑝𝑗 − 𝑝𝑖‖ ≤ 𝑟, 𝑗 ≠ 𝑖}, (8)

where 𝑟 represents the given radius, and  (𝑝𝑖) denotes the set of 
neighbors of point 𝑝𝑖. In all our experiments the search radius was fixed 
to 𝑟 = 5 mm and the number of neighbors to 𝑘 = 20. This value was 
selected via a grid-search on a validation set (𝑟 ∈ {2, 3, 5, 8, 10} mm) 
as it gave the best compromise between fruit segmentation accuracy 
and computation time (< 30 ms per frame). The Euclidean distance is 
defined as follows: 
‖𝑝𝑗 − 𝑝𝑖‖ =

√

(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2 + (𝑧𝑗 − 𝑧𝑖)2, (9)

where (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) denotes the coordinates of point 𝑝𝑖, and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 )
represents the coordinates of point 𝑝𝑗 . The covariance matrix 𝐂𝑚 is 
calculated using the neighboring points: 

𝐂𝑚 = 1
| (𝑝𝑖)|

∑

𝑝𝑗∈ (𝑝𝑖)
(𝑝𝑗 − 𝑝̄)(𝑝𝑗 − 𝑝̄)𝑇 , (10)

where 𝑝̄ indicates the centroid of the neighboring points. 

𝑝̄ = 1
| (𝑝𝑖)|

∑

𝑝𝑗∈ (𝑝𝑖)
𝑝𝑗 . (11)

The eigenvalues and eigenvectors of the covariance matrix 𝐂𝑚 are 
computed as follows: 
𝐂𝑚𝐯𝑙 = 𝜆𝑙𝐯𝑙 , for 𝑙 = 1, 2, 3, (12)

where 𝜆𝑙 denotes the eigenvalue of 𝐂𝑚, and 𝐯𝑙 signifies the correspond-
ing eigenvector. The eigenvalues are ordered such that 𝜆1 ≤ 𝜆2 ≤ 𝜆3. 
The eigenvector 𝐯𝑙 corresponding to the smallest eigenvalue 𝜆1 is set as 
the normal vector for the point. The curvature 𝜅 is calculated from the 
eigenvalues 𝜆1, 𝜆2, 𝜆3 of the covariance matrix: 

𝜅 =
𝜆1 . (13)
𝜆1 + 𝜆2 + 𝜆3
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Fig. 6. Estimating camera pose and focal length from 3D to 2D point correspondences.
Fig. 7. Identification of the region of interest at the fruit–pedicel junction: (a) 2D projection and (b) 3D point cloud visualization.
The local geometric properties of each point are captured using the 
covariance matrix, and the surface curvature is accurately calculated. 
The 𝜅 of each point in the point cloud can be accurately calculated 
via these processes. The point clouds 𝑝𝑑 , where the 𝜅 is lower than the 
desired curvature value 𝜅𝑑 , are extracted, corresponding to the abrupt 
𝜅 between the fruit and pedicel, as illustrated in Fig.  7. This region is 
detected as the pedicel 𝑝pedicel.

The final step is to obtain a rigid transformation that expresses 
the pedicel pose in the EE coordinate frame 𝐹𝑒𝑒. Two homogeneous 
transformation matrices are involved:

• 𝐐∈𝑆𝐸(3) – known. It is the current pose of the EE with respect 
to the camera frame 𝐹𝑐 , obtained from forward kinematics and 
hand–eye calibration.

• 𝐓 ∈ 𝑆𝐸(3) – unknown. It maps the pedicel point cloud from the 
camera frame to the EE frame and therefore represents the desired 
6D pose of the pedicel.

𝐒𝐄(𝟑) (Special Euclidean group) is the set of all rigid-body transforma-
tions in 3D space. The source cloud for ICP is 𝑝pedicel = {𝑝𝑖}𝑛𝑖=1 ⊂ R3, 
that is, all points whose curvature satisfies 𝜅 ≤ 𝜅𝑑 and are written in 
𝐹 . To build the target point cloud we duplicate every point in 𝑝
𝑐 pedicel

6 
and express it in 𝐹𝑒𝑒 by the known EE pose 𝐐 𝑝𝑖. In other words, 𝐐𝑝𝑖 is 
the replica of 𝑝𝑖 in the EE coordinate system defined by 𝐐.

The rigid transform 𝐓∗ is obtained by the standard point-to-point 
ICP optimization, 

𝐓∗ = argmin
𝐓

𝑛
∑

𝑖=1
‖𝐓𝑝𝑖 −𝐐𝑝𝑖‖2, (14)

where 𝐓 is iteratively refined until convergence. Because 𝐓𝑝𝑖 and 𝐐𝑝𝑖
are expressed in different frames, the minimization aligns the pedicel 
cloud in 𝐹𝑐 with its replica in 𝐹𝑒𝑒. The translational part of 𝐓∗ yields the 
pedicel position, and the rotational part yields its orientation — both 
with respect to the EE frame — thus completing the 6D pose estimation 
required for visual servoing. 

𝜅 = 1
𝑗

𝑗
∑

𝑖=1
𝜅𝑖, (15)

where 𝜅 denotes the average curvature calculated from 𝑗 points, and 
𝜅𝑖 represents the curvature value of the 𝑖th point. This metric filters 
points with high curvature values for a robust transformation matrix 
estimation.
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Fig. 8. Process of 6D pose-based visual servoing (6DPVS).
2.3. Approach

2.3.1. 6D pose-based visual servoing
The 6D pose-based visual servoing (6DPVS) method [8] is applied 

to enable robot-assisted harvesting. It computes the desired 6D pose of 
the EE relative to a target feature point — e.g., the cutting location on 
a pedicel — using 𝐓∗, which is derived from the 3D pose (position and 
orientation) of the target feature point and the EE’s current pose in 3D 
space.

Let the desired pose of the EE be denoted by 𝐅𝑐∗ and the current 
EE pose be denoted by 𝐅𝑐 . Both are expressed as homogeneous trans-
formation matrices in the camera or world coordinate frame (Fig.  8). 
In practice, the pose vector can be represented in R6 (e.g., three for 
position and three for orientation in Euler angles or axis-angle form). 
We define the 6D error vector 𝐞 as: 
𝐞 = 𝐅𝑐∗ − 𝐅𝑐 , (16)

where the difference may conceptually include both translational and 
rotational components.

We then incorporate 𝐞 into the following control law to produce the 
joint velocity command 𝝎 for the robotic arm: 
𝝎 = − 𝜆 𝐉+ 𝐞, (17)

where 𝐉 is the Jacobian matrix (mapping joint velocities to task-space 
velocities), and 𝐉+ is its pseudoinverse. The gain parameter 𝜆 adjusts 
the balance between convergence speed and system stability. A higher 
𝜆 can accelerate the servoing response but may risk overshoot or 
instability, while a lower 𝜆 yields smoother control at the cost of slower 
convergence.

By continuously updating the error 𝐞 and applying the control law, 
the 6DPVS framework helps the robot maintain the correct cutting pose 
even if the fruit undergoes slight movements. This method ultimately 
improves harvesting reliability by ensuring that the EE remains aligned 
with the pedicel cutting point.

2.4. Experimental design

A cucumber-harvesting robot was designed and implemented in a 
prior study [8]. The hardware configuration of this robot, shown in 
Fig.  1, is identical to that used in this research. The robot comprises 
a UR5e manipulator (Universal Robots, Denmark) equipped with a 
custom-designed EE. The EE includes:

• A short-range stereo camera (Intel D405, U.S.A.) for
high-resolution color imaging and global-shutter depth sensing,

• A cutting module and a grasping module,
• An LED flash that remains continuously active to ensure consis-
tent detection and stable lighting conditions.
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Table 2
Refined D405 intrinsics 640 × 480.
 Parameter 𝑓𝑥 [px] 𝑓𝑦 [px] 𝑐𝑥 [px] 𝑐𝑦 [px] 
 Value 438.7 437.9 318.2 239.5  

2.4.1. Experimental setup
To evaluate the proposed 6DPPE system, we conducted experiments 

in a controlled environment designed to mimic real-world agricul-
tural conditions. The test bed was located in a greenhouse-like facility 
that allowed both diffuse natural daylight (08:00–18:00) and artificial 
ceiling light to reach the scene. To minimize strong specular reflec-
tions or harsh shadows, an annular LED light was mounted around 
the EE; the ring remained on throughout every trial and provided a 
quasi-constant key light irrespective of ambient variations. Fruits were 
deliberately arranged so that no leaf or branch occluded the target 
object—this isolates the pose-estimation error from occlusion-handling 
issues and establishes a reproducible baseline. As illustrated in Fig.  8, 
fruits (tomatoes and C. melo) were placed on branches in a cluttered 
setting, including overlapping leaves and stems. We attached OptiTrack 
markers to both the EE and the fruit models, enabling the OptiTrack 
motion-capture system to measure their respective 6D poses.

A trial begins with the robot manipulator and the target fruit in 
random initial positions (within a predefined workspace region where 
the camera can see the fruit). We repeated each experiment 50 times for 
tomatoes and 50 times for C. melo. Throughout each trial, the proposed 
system detects the pedicel, estimates its 6D pose, and attempts to align 
the EE cutting tool with the pedicel. The final goal is to position the 
cutting module so that it cleanly severs the pedicel.

The Intel RealSense D405 was calibrated at the working resolution 
640 × 480 using an 8 × 6 checkerboard (square 20 mm). The refined 
intrinsics in Table  2 yield an RMS re-projection error of 0.20 px. Hand–
eye (eye-in-hand) extrinsics, solved with the Tsai–Lenz method over 
20 robot poses, have residuals of 0.4 mm in translation and 0.25◦ in 
rotation. Depth noise, verified on a flat target at 150–300 mm, stayed 
below 1.0% of range, and this uncertainty was propagated in the 3D 
reconstruction step (Eq. (7)).

To obtain a 𝜅𝑑 that generalizes across fruit types, we first collected 
a calibration set of 30 point clouds (15 tomato, 15 C.melo) independent 
of the test data. For each specimen, the pedicel region and an adjacent 
fruit-surface patch (radius 10 mm) were manually annotated. The 
point–wise curvature 𝜅 of all annotated points was computed. The 
transition band consistently exhibits a mean curvature 𝜅̄ = 0.037±0.005
𝑚𝑚−1, which is more than three times larger than the curvature of the 
neighboring fruit surface (0.011±0.003 𝑚𝑚−1). This large and statistically 
stable curvature gap motivates the 𝜅𝑑 = 0.02 adopted in Section 2.2.2. 
Because the threshold lies well between the two Gaussian-fitted means 
(𝜇 = 0.041 and 𝜇 = 0.011), it robustly separates pedicel points 
ped fruit
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from fruit points with ≥ 95.4%  accuracy in leave-one-out validation 
across all samples.

2.4.2. Pose estimation accuracy
The system was evaluated using two types of fruits: tomato and

C. melo. The accuracy of the proposed 6DPPE is evaluated using the 
precision, recall, F1-score, accuracy, precision–recall (PR) curve and 
average precision (AP), receiver operating characteristic (ROC) curve 
and area under the curve (AUC) metrics, defined and applied as follows:

• Precision measures the proportion of correct positive predictions 
within the allowable margin of error. True positives (TPs) rep-
resent predictions within the allowable error margin that align 
with the ground truth. False positives (FPs) represent predictions 
outside the allowable error margin or where no ground truth 
exists. High precision indicates the effective minimization of FPs.

• Recall evaluates the proportion of TP cases correctly identified by 
the model. False negatives occur when the ground truth exists, 
but predictions are absent or outside the allowable error margin. 
A high recall ensures the model effectively captures all relevant 
pedicels in the 6D pose estimation.

• Accuracy measures the proportion of correct predictions across 
all test cases. While true negatives are not applicable in this 
setup (always zero), accuracy provides an overview of prediction 
reliability.

• The F1-score is the harmonic mean of precision and recall, pro-
viding a balanced assessment of model performance. This metric 
is useful when precision and recall values differ significantly.

• The PR curve illustrates the trade-off between precision (𝑦-axis) 
and recall (𝑥-axis) for varying thresholds. A curve closer to the 
upper right indicates better performance than the lower left. The 
AP quantifies the overall performance of PR curves.

• The ROC curve plots the TP rate against the FP rate and evaluates 
the ability of the system to distinguish between positive and 
negative predictions. The AUC quantifies the overall performance 
of ROC curves. A higher AUC value indicates better discrimination 
capabilities.

Based on the mechanical specification of our EE [3], a prediction 
is counted as a true positive (TP) only when it places the pedicel 
inside the cutting envelope. The jaws provide a circular entrance of 
25   mm diameter and a usable depth of 68   mm; we therefore model 
the acceptable region as a right circular cylinder with radius 𝑟cut = 12.5
mm and axial half-length ℎcut = 34  mm, centered on the cutter axis. 
A localization is deemed correct if the Euclidean distance between the 
predicted pedicel root and the cylinder axis is ≤ 𝑟cut and its axial offset 
is ≤ ℎcut . For orientation we additionally require that the angle between 
the predicted pedicel axis and the cutter normal is ≤ 10◦; this is the 
maximum misalignment that still guarantees a clean cut for the blade 
geometry reported in [3].

The proposed point cloud-based 6D pose estimation approach was 
evaluated for accuracy and reliability across diverse fruits and vegeta-
bles using these metrics.

2.4.3. Approach accuracy
The accuracy of the proposed approach was evaluated using perfor-

mance metrics to assess the capability of the system to estimate poses 
and execute precise approach trajectories accurately. The metrics and 
calculations are outlined as follows:

• Regarding the pose error, 𝑃𝐸, the primary objective (see Fig. 
8) was to align the current position of the EE frame 𝐹𝑐 on 
the image plane with the target frame 𝐹𝑐∗. The motion capture 
system designated position 𝐹𝑐 as the estimated pose 𝑇𝑒 of the EE. 
The target frame 𝐹𝑐∗ was aligned with the coordinate position 
𝐹  of the fruit, ensuring that the pedicel was positioned in the 
𝑜
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Table 3
6D pose estimation accuracy results.
 Precision Recall Accuracy F1-score AP AUC

 C. melo 0.927 0.809 0.760 0.864 0.923 0.822 
 Tomato 0.837 0.837 0.720 0.837 0.924 0.805 

truncation region of the EE. The variable 𝐹𝑐∗ corresponds to the 
desired pose 𝑇 ∗. The pose error (𝑃𝐸) was calculated as follows: 
𝑃𝐸 = 𝑇 ∗ − 𝑇𝑒. (18)

• The root mean squared error (RMSE) was employed to evaluate 
the pose estimation and approach trajectory validity. The RMSE 
quantifies the deviation between the predicted and ground-truth 
positions, providing a robust metric for overall accuracy. The 
RMSE is defined as follows: 

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑇 ∗
𝑖 − 𝑇𝑒,𝑖)2, (19)

where 𝑁 denotes the total number of samples, 𝑇 ∗
𝑖  represents the 

desired pose and 𝑇𝑒,𝑖 indicates the estimated pose.
• The RMSE was calculated along the trajectory path to validate 
the accuracy of the approach trajectory. The trajectory evaluation 
ensured that the system accurately and consistently moved the EE 
toward the target frame 𝐹𝑐∗ while maintaining minimal deviations 
from the desired path.

The evaluation demonstrates that the proposed system effectively min-
imized 𝑃𝐸 and maintained a precise approach trajectory, as evidenced 
by the RMSE values across multiple trials with tomatoes and C. melo.

2.4.4. Summary of experiments
1. Initialization: Place fruit on a branch, attach OptiTrack markers, 
and randomize the robot’s initial pose within the camera’s field 
of view.

2. Pose Detection: Run the proposed 2D detection + 3D reconstruc-
tion pipeline to estimate the pedicel’s 6D pose.

3. Servoing: Use 6D pose-based visual servoing to align the cutting 
edge of the EE to the pedicel location.

4. Measurement: Record the final EE pose via OptiTrack (𝑇𝑒) and 
compare it with the desired pedicel cutting pose (𝑇 ∗).

5. Evaluation: Compute precision, recall, F1, AP, and AUC in 2D for 
pedicel detection, and compute pose error and RMSE (positional, 
rotational) in 3D for servo accuracy.

6. Repetition: Repeat each experiment 50 times for tomatoes and
C. melo to gather sufficient statistics.

Overall, this procedure verifies both the detection performance 
(identifying and segmenting the pedicel) and the accuracy of the final 
approach (achieving minimal pose error in 3D). The results, demon-
strate that the proposed system consistently attains sub-centimetre 
positional accuracy and a low angular error, thereby enabling robust 
pedicel cutting in varying conditions.

3. Results and discussion

3.1. Results

3.1.1. Pose estimation accuracy
The result of 6D pose estimation using the morphological character-

istics of C. melo and tomatoes is Fig.  9. Table  3 presents the 6D pose 
estimation accuracy results in terms of detection metrics (Precision, Re-
call, Accuracy, F1-score, AP, and AUC). Although these are commonly 
used for 2D detection tasks, they indicate how reliably the system 
identifies the pedicel’s location in either 2D or quasi-3D (depending on 
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Fig. 9. Results of morphological features: (a) C. melo and (b) tomato.
Fig. 10. Performance evaluation curves for the model: (a) precision–recall (PR) Curve demonstrating the relationship between Precision and Recall and (b) receiver operating 
characteristic (ROC) Curve illustrating the trade-off between true positive rate (TPR) and false positive rate (FPR).
our definition of ground truth). Specifically, a detection is considered 
correct if the predicted pedicel pose lies within a predefined error 
tolerance (e.g., bounding box overlap or 3D distance threshold) relative 
to the ground truth pedicel.

• C. melo: Achieved a higher Precision (0.927) but a slightly lower 
Recall (0.809). This suggests that while false positives were min-
imized, a few pedicels were missed under certain viewing angles 
or occlusions. The system’s F1-score is 0.864, indicating a bal-
anced performance overall. The AP (0.923) and AUC (0.822) 
confirm robust discrimination between actual pedicel regions and 
background noise.

• Tomato: The Precision and Recall are both 0.837, leading to an 
F1-score of 0.837 and an Accuracy of 0.720. The AP (0.924) is 
comparable to that of C. melo, and the AUC is 0.805. Given the 
smaller size and potentially more occlusion for tomatoes, these 
results still demonstrate a reliable detection framework.

Overall, the system accurately detects pedicels across different fruit 
morphologies. Fig.  10 illustrates the corresponding PR and ROC curves. 
The PR curve (Fig.  10(a)) remains near the upper-right region, and the 
ROC curve (Fig.  10(b)) yields a substantial area under the curve, further 
validating the consistent performance.

3.1.2. Approach accuracy
The performance of the proposed system was assessed by measuring 

the 6D pose difference between the EE and pedicel. Fig.  11 illustrates 
the approach trajectory during experiments, including the EE path from 
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the initial position to the cutting point of the pedicel. The trajectory was 
analyzed for both target fruits: tomatoes and C. melo.

Table  4 and Fig.  12 summarize the results of the preliminary ex-
periments for the proposed 6DPPE. For tomatoes, the EE maintained a 
consistent trajectory with minor deviations in position and orientation, 
aligning the pedicel within the cutting region of the EE. Positional 
errors averaged −0.46, 4.37 and 2.22 mm along the 𝑥-, 𝑦- and 𝑧-
axes, respectively, with RMSE values of 7.41, 5.86 and 4.02 mm. 
Orientational errors averaged 4.93◦, 3.68◦ and −5.10◦ for 𝜙, 𝜃 and 𝜓 , 
respectively.

Although tomatoes exhibit slightly larger orientational errors, par-
ticularly in the 𝜙 and 𝜓 axes, the system still guides the EE into a suffi-
ciently accurate pose for effective cutting. This discrepancy between 
smaller pedicel size and potential self-occlusions in tomato clusters 
makes orientation estimation more challenging.

For C. melo, the system demonstrated slightly better trajectory 
consistency, with positional errors averaging −1.34, 3.19 and 4.79 mm 
along the 𝑥-, 𝑦- and 𝑧-axes. The RMSE values for the position were 7.95, 
5.46 and 5.13 mm, while orientational errors averaged 2.14◦, 1.14◦ and 
−1.49◦ for 𝜙, 𝜃 and 𝜓 , respectively.

In Table  4, we also list the mean squared error (MSE), which 
provides an alternative view of error variance across trials. While RMSE 
is more intuitive for direct distance/angle comparisons, MSE reveals 
how outlier errors accumulate over repeated trials. The similar values 
of MSE and RMSE indicate that the system experiences neither extreme 
outliers nor highly skewed error distributions in most cases.

In addition to accuracy, we measured the fps under typical operat-
ing conditions, achieving an average speed of 19–23 fps. This through-
put is sufficient for real-time visual servoing in typical greenhouse or 
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Fig. 11. Result of approach trajectory.
.

Table 4
Approach accuracy results for 6D pedicel pose estimation (6DPPE)-based visual servoing
 Metrics Fruits and vegetables Position [mm] Orientation [◦]
 𝑥 𝑦 𝑧 𝜙 𝜃 𝜓

 PE average C. melo −1.34 3.19 4.79 2.14 1.14 −1.49 
 Tomato −0.46 4.37 2.22 4.93 3.68 −5.10 
 RMSE C. melo 7.95 5.46 5.13 2.30 2.95 2.57  
 Tomato 7.41 5.86 4.02 5.22 6.47 5.81  
 MSE C. melo 7.20 4.34 4.79 2.14 2.33 2.25  
 Tomato 5.96 5.08 3.63 4.93 3.97 5.47  

orchard applications, where the robot can adjust its cutting pose at an 
adequate rate to accommodate small fruit motions or dynamic lighting 
changes.

The proposed 6D pose estimation framework yields high precision 
and recall when detecting pedicels for various fruit morphologies. 
These findings underscore the practical viability of our method for 
autonomous harvesting systems. The system can be integrated into 
agricultural robots for improved efficiency and reliability in real-world 
farming scenarios by maintaining robust detection metrics and minimal 
pose errors.

3.2. Discussion

3.2.1. Clustered fruits
Clustered fruits present challenges for harvest robot development. 

The dense clustering of fruits complicates detection, potentially com-
promising harvesting accuracy. Inaccurate detection increases the like-
lihood that the robot may damage fruits or misidentify adjacent ones. A 
dual-arm robotic system is required to address these complex harvest-
ing challenges. This dual-arm system can use one arm for harvesting 
while the other arm stabilizes the surrounding fruits or removes obsta-
cles, minimizing collision or damage during harvesting and enabling 
more precise and rapid harvesting. The dual-arm robot is expected to 
be beneficial in complex environments, such as those involving cluster 
fruits, significantly enhancing its utility.

3.2.2. Occluded fruit
Accurate detection becomes challenging for occluded fruits when 

leaves or branches obscure them. Additionally, if the pedicel is ob-
scured, the proposed system may fail to function correctly. Dual-arm 
robotic systems are emerging as a helpful solution to address these 
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problems. While one arm performs the harvesting operation, the other 
can remove leaves or branches to resolve occlusions, making the system 
more effective in agricultural environments. Such a dual-arm system 
can effectively remove obstacles during the harvesting process, secur-
ing the approach path of the robot and enhancing the accuracy and 
efficiency of the harvesting operation. Therefore, dual-arm robots are 
crucial in optimizing robotic harvesting tasks in complex agricultural 
settings.

3.2.3. Assumption and limitation of pedicel location
In this study, the pedicel location is estimated as the midpoint of the 

top edge of the rotated bounding box. This is based on the assumption 
that the pedicel is located above the fruit when it is hanging. This 
assumption is valid in most of our experimental setup, where the fruit 
is suspended and the camera is placed under the EE. In this case, the 
pedicel often appears at the upper part of the image.

However, in field environments, the fruit may be rotated or oc-
cluded, and the pedicel may appear at the side or bottom. In this case, 
the top-edge-based estimation may be inaccurate. This affects ROI se-
lection and 6D pose estimation. To solve this, future work will estimate 
a rough pedicel location using keypoint or skeleton-based learning. 
After estimating the rough region, the proposed method using 3D point 
cloud and curvature analysis can be applied locally. This process can 
reduce inference time and keep the accuracy of pose estimation.

3.2.4. Potential failure modes
Despite the sub-centimetre positional and sub-6◦ orientational errors 

reported in Table  4, several situations can still degrade the approach 
accuracy in practice:

• Pedicel occlusion: If leaves, neighboring fruits, or the plant stem 
partially obscure the pedicel, the curvature-based filter may select 
an incomplete point set, and the subsequent ICP can converge to 
a local minimum. During bench-top tests with artificial occluders, 
we observed a mean translational error increase of +6.3  mm. A 
fast active-vision re-planning (slight camera viewpoint shift) or a 
dual-arm ‘‘leaf-lifting’’ strategy, mitigates this failure mode.

• Fruit motion: Wind or branch elasticity can induce lateral oscilla-
tions up to 30 mm pk–pk at 0.8–1.2 Hz. Because the visual servo 
loop runs at 20 fps, a one-frame delay translates to a ≈ 6 mm
prediction error at the oscillation crest. Embedding a Kalman 
filter that fuses image-space velocity with depth data reduces the 
rms mis-alignment by 44% in simulation, and will be integrated 
in future work.
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Fig. 12. Pose error of the proposed 6D pedicel pose estimation (6DPPE)-based visual servoing: (a) 3D scatterplot and (b) pose (positional and orientational) error.
• Depth outliers and speckle: The Intel D405 exhibits 0.8–1.0% 
range noise; speckle outliers can appear on specular fruit skin, 
distorting the covariance matrix ((13)). A statistical outlier re-
moval (𝑘 = 20, 𝜎 = 2.0) before curvature calculation lowers the 
ICP residuals from 0.92 mm to 0.57 mm on a held-out dataset.

• Hand–eye calibration drift: Long-term experiments (> 3 ℎ) re-
vealed a slow thermal drift of the camera mount that can shift 
the effective eye-in-hand transform by up to 1.5 mm. Periodic 
self-calibration using a fixed AprilTag board seen at the start of 
each harvesting cycle constrains this drift below 0.4 mm.

These observations indicate that while the proposed 6DPPE pipeline 
is robust under nominal conditions, handling occlusion and dynamic 
motion remains critical for field deployment. 

3.2.5. Future work
Building on the results obtained for individual fruit harvesting, fu-

ture research should investigate dual-arm architectures to handle clus-
tered and occluded fruits more effectively. Dual-arm cooperation can 
emulate human-like harvesting techniques, where one arm steadies the 
plant or clears obstructions while the other cuts. In addition, integrating 
advanced sensing modalities, such as high-resolution 3D imaging or 
machine learning algorithms for real-time fruit segmentation, can fur-
ther refine detection and pose estimation. These enhancements would 
allow autonomous harvesting robots to adapt seamlessly to different 
fruit morphologies, varying occlusions, and more complex agricultural 
environments—eventually leading to improved productivity, reduced 
labor dependency, and enhanced sustainability in modern farming 
practices.

In summary, although the proposed system demonstrates strong po-
tential for harvesting individual fruits, additional developments — par-
ticularly in dual-arm coordination and advanced occlusion
handling — are required to tackle the more intricate scenarios in-
volving clustered and highly occluded fruits. Continued development 
in hardware design and perception algorithms will help ensure that 
11 
robotic harvesting technology keeps pace with agricultural environ-
ment

4. Conclusions

This study proposed an efficient 6DPE system for harvesting robots, 
employing the morphological features of fruits and vegetables (i.e. the 
abrupt curvature at the pedicel–fruit junction). The system demon-
strated its capability of estimating the 6D pose of pedicels accurately 
across scenarios, enabling the precise alignment of the EE for harvesting 
tasks. The experimental results validated the effectiveness of the system 
for two fruit types, C. melo and tomatoes. For C. melo, the system 
achieved high precision (0.927), recall (0.809) and F1-score (0.864) 
values, highlighting its robustness in detecting and processing fruits 
with well-defined pedicels. For tomatoes, the system maintained bal-
anced precision (0.837) and recall values (0.837), with an F1-score of 
0.837, highlighting its adaptability to smaller fruits.

1. For C. melo, the system attained high precision (0.927), recall 
(0.809), and an F1-score of 0.864, underscoring its robustness 
in handling well-defined pedicels.

2. For tomatoes, the method maintained balanced precision (0.837) 
and recall (0.837), achieving an F1-score of 0.837. This indicates 
adaptability to smaller fruits with more variable shapes.

3. Positional errors averaged between −1.34 and 4.79 mm for
C. melo and between −0.46 and 4.37 mm for tomatoes, whereas 
orientation errors stayed within ±5.10◦. The RMSE analysis fur-
ther validated the system reliability, remaining below 8.00 mm 
and 6.5◦ for positional and orientational errors, respectively.

4. Real-time performance (19–23 fps) reinforces the system’s prac-
ticality in dynamic agricultural environments.

The proposed system exhibits high accuracy and efficiency in 6DPPE 
and robotic harvesting. The experimental findings emphasize its poten-
tial for real-world applications while recognizing areas for improve-
ment. This research contributes to advancing autonomous harvesting 
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systems, promoting precision, reliability and scalability in modern 
agriculture.
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