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ABSTRACT This study proposes a perception and analysis method for precise aerial spraying based on
three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and
the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-temporal
data are processed for the segmented point cloud data. The spray from each nozzle is clustered through
spatial data processing, and clustering is based on this information. This approach allows each nozzle to
be distinguished and mapped. Processing temporal data compensates for unsensed or noisy data points and
predicts the water droplet trajectories, enhancing the spray data. This method more accurately measures the
shape of water droplets. Experiments altering the flight conditions of unmanned aerial vehicles (UAVs) were
conducted to assess the proposed framework, demonstrating that processing is feasible in the onboard system
of the UAV. The proposed method has potential application in control systems for precise spraying in the

future.

INDEX TERMS Spatial-temporal filtering, clustering, grouping, precision aerial spraying.

I. INTRODUCTION
The agricultural paradigm has been shifting from traditional
to digital agriculture due to the influence of the Fourth Indus-
trial Revolution [1]. Precision agriculture is a prime example
of digitalization in agriculture. In most cases of precision
agriculture, intelligent and autonomous systems have been
developed to improve crop quality and productivity [2], [3].
The agricultural task has been digitized using a variety of
robots for various tasks such as monitoring [4], [5], crop
counting [6], yield prediction [7], pest detection [8], [9],
autonomous transporting [10], artificial pollination [11], and
spraying [12].

Among various agricultural tasks, spraying consumes time
and financial resources while profoundly affecting crop
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productivity and quality [13]. Existing methods have used
speed sprayers on the ground to spray a significant volume
of pesticide indiscriminately [14]. Such conventional spray
methods have often led to adverse consequences, including
alterations in soil properties from overusing pesticides,
as many pesticides are applied without discrimination.
Furthermore, these practices put farm workers at risk of
pesticide exposure, potentially leading to poisoning [15].
Intelligent spraying systems have been studied to address
this problem. Intelligent spray systems are based on
unmanned ground vehicles to prevent pesticide exposure
of farm workers. Subsequently, a system that selectively
targets and sprays orchards based on crop recognition has
been introduced to reduce soil contamination and economic
loss due to pesticide overuse, leading to a more optimized
intelligent spray system. However, ground-based spraying
still encounters limitations such as overcoming large-scale
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environments, unstructured terrains, and other geographical
constraints.

Research has shifted toward aerial spray control to address
the limitations of ground-based spraying. Unmanned aerial
vehicles (UAVs) have emerged as a promising platform for
efficiently applying pesticides and fungicides, significantly
contributing to the prevention and control of crop diseases
and pests [16], [17]. Moreover, UAV-based spraying offers
advantages in reducing the spray time and pesticide use [18].
However, the downward winds generated by UAV propellers
pose a fundamental problem, hindering the effective delivery
of pesticides to the intended target. Although UAV-based
systems have enhanced efficiency by rapidly spraying
chemicals, this increased efficiency has also heightened
concerns about the potential drift of pesticide droplets
into the environment. This problem arises during pesticide
application across all platforms (ground and aerial), where
drift can occur unintentionally during spraying, potentially
causing damage to non-target crops. This problem must
be carefully considered because it can precipitate serious
consequences, including conflicts between farmers.
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FIGURE 1. Spray control system (a) conventional (b) proposed (with
feedback).

Previous research has revealed that 1% to 30% of sprayed
pesticides can potentially drift into non-target areas [19].
Drift to non-target areas is unavoidable, necessitating the
development of methods to reduce it. The development of
intelligent and precise spray control systems could be a
solution because they enable targeted and precise spraying.
Similar to ground spraying, recognizing and targeting fruit
trees is crucial, for intelligent aerial spraying. However,
achieving precision in spraying is challenging from an aerial
perspective due to the relatively lower resolution compared
to images obtained from ground sprayers. Therefore, relying
solely on fruit tree information for precise spraying becomes
challenging. Consequently, a specific approach for aerial
spraying is required. The first specific requirement is to
measure the spray. Most previous research on measuring
spray has focused on determining spray characteristics within
specific settings and conditions. However, most of these
studies have been conducted under static environmental
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conditions. In reality, natural environments are characterized
by dynamic changes influenced by uncontrollable factors,
such as wind direction and speed. Thus, research conducted
under the assumption of controlling these variables makes
it challenging to apply to real-world scenarios. Additionally,
previous studies primarily focused on spatial data to identify
and analyze spray characteristics. In this case, numerical
simulations were developed using the spatial data of the
spray to predict the spray. However, predictive models face
challenges in obtaining accurate values for all variables and
identifying the timing of drift occurrence without temporal
information on spray over time. Therefore, new methods are
needed to measure spray and analyze spray characteristics
effectively in actual field conditions.

The second specific requirement is real-time control
considering dynamic environment. For precise aerial spray
control, a feedback control loop based on real-time measured
spraying is necessary. However, previously researched spray
models have been designed under constrained conditions
such as assumptions regarding environmental variables and
wind conditions, making them unsuitable for real-time
control. Using pre-designed models for real-time control
lacks consideration for environmental variables, resulting in
incorrect spraying.

Currently, aerial spray control operates at the level depicted
in Fig. 1(a), referencing spatial prediction models to control
spraying by pre-defining the path and spray pressure. The
approach in Fig. 1(a) depicts simple manual control through
parameter settings. Therefore, to implement feedback control
based on real-time data, as indicated in Fig. 1(b), spatial and
temporal data on spraying must be measured in real-time.

This paper proposes a spatial-temporal filtering-based
perception and analysis system (STPAS) for precise aerial
spraying. The STPAS comprises real-time spray measure-
ment coupled with spatial data filtering. Through this
process, real-time spray characteristics can be obtained by
quantitatively analyzing the results.

A. RELATED WORKS

1) SPRAY DETECTION

A study was conducted to recognize and characterize
water droplets to determine the effectiveness of the water
droplet spray system. Spray measurement methods can be
categorized into two types: water-sensitive paper (WSP)
analysis and spray shape visualization. This section outlines
the existing spray measurement methods and reviews their
limitations.

The WSP features a yellow surface with a special coating.
Upon contact with water, the surface of the WSP changes
color, turning blue when contacting water droplets. This
characteristic is commonly studied to evaluate the spray
pattern and degree of adhesion [20]. Specifically, this method
has been employed to address the problem of unintentional
spraying onto crops other than the intended target crop,
primarily stemming from variations in spray coverage.
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In another study [21], a pulse width modulation (PWM)-
based spray system was designed to apply the necessary
amount precisely where required. The characteristics of the
spray were evaluated using a wooden structure attached to
a WSP in the moving direction of the sprayer. In another
study [22], the measurement of spray losses was determined
using the WSP and nylon screens mounted at five heights
on each of seven columns distributed at various distances.
However, although this method can be effective in quantify-
ing the spray, determining the characteristics of the spray is
inherently challenging because this method relies solely on
the spray adhering to the surface. Additionally, this method
cannot analyze the result as a time series because it can only
analyze data within that space.

Therefore, research was conducted to recognize sprays
based on time-series data [23]. In these studies [24], [25],
research was conducted based on computer vision and deep
learning to detect and track the movement of water droplets
captured by a camera. A portable visual sensor system was
designed to detect the spray droplet deposition in UAV
spray applications [26]. A learning model was designed
by building a light adaptation model to consider the effect
of light on image recognition. The droplet size range was
investigated using optical diagnostic methods, including laser
diffraction-based droplet sizing, high-speed photography, and
microscopic flow visualization [18]. The spatial distribution
of spray affected by crosswinds was investigated and
measured using a two-dimensional patternator and WSP.
However, the experiments were only performed in the
laboratory or on a small scale and cannot be directly applied
to actual applications. Afterward, a quantitative classification
study was conducted by observing the spray drift using a
mobile LiDAR method so that it could be applied in a real
environment [27]. The drift analysis system was employed
to cross-verify the performance of the developed intelligent
spray system [13].

2) SPRAY ANALYSIS
Studies have been conducted to analyze droplet deposition
and drift and the single or multiple independent factors that
influence the deposition characteristics of water droplets
sprayed by UAVs [28]. A study was conducted to determine
the degree of deposition on the WSP to analyze the measured
water droplets. In a study [29] images of the WSPs were
analyzed using the fractal dimension, which was highly
correlated with the quantitative spray measurements of the
spray coverage and volume. This approach suggests the use
of the fractal dimension as a quantitative measure to describe
the regularity of the water droplets on the WSP.
Meteorological conditions, operating parameters, and the
droplet size of the nebulizer affect the spray area and absorp-
tion adhesion to the target [28]. Therefore, single rotor-based
aerial control was performed to determine the flight height,
spray deposition (depending on the flight speed), number
of spray depositions, coverage area, and droplet size [30].
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Although the droplet parameter coefficients were determined
from the experimental results, only water droplet data were
still used. Moreover, [31] developed a computational fluid
dynamics model to predict downwash within a tree canopy.
A research method based on agricultural field environmental
factors was proposed to simulate the deposition and drift
characteristics of spray droplets numerically. Although a
numerical analysis can help explain the effect of the applied
parameters and tree structure on the distribution of the
downdraft airflow within the tree canopy, it lacks reliability
for field variables.
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FIGURE 2. lllustration of the problem statement: The right top spray
represents an ideal spray pattern according to the nozzle angle; The right
bottom spray represents the actual spray pattern, which includes drift
due to external forces.

3) SPRAY CONTROL

Existing methods have failed to spray target crops effectively
because they maintain a consistent flow rate, resulting in
problems that extend to the management of the surrounding
areas. Therefore, research has recently been conducted
to adjust the spray volume by considering the canopy
variability [32]. In [33] found that droplet size was regulated
to enhance the efficiency of the developed intelligent spray
robot and mitigate the risk of unintended spraying. Droplet
size was determined using PWM control, and the optimal
PWM settings were identified by assessing the droplet size
distribution, nozzle tip pressure, duty cycle, nozzle type, and
gauge pressure.

Most of the related research has studied or developed
ground spray robots. However, control methods for UAVs
specifically designed for crop spraying have still not been
reported. Compared to ground-based pesticide spray robots,
UAV sprayers are significantly influenced by wind conditions
inherent in aerial spraying, including downward winds.
Therefore, precise spray in aerial spraying control systems
is increasingly necessary.

B. CONTRIBUTIONS

The contributions and novelty of this study are summarized
as follows:
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1) Development of a perception system using a deep
learning-based method in real-time.

2) Development of a process using spatial and temporal
data processing to analyze the shape of the spray in real-
time.

3) Field evaluation of the feasibility of implementation in
real-world environments.

Il. PROBLEM STATEMENT

As mentioned, the problem arising from the drift of insecti-
cides for pesticide spray is depicted in Fig. 2. The desired
outcome from aerial spray is ideally a straight-line distri-
bution, as presented on the left. However, actual spraying,
as depicted on the right, may result in some droplets being
drift in unintended directions due to downdrafts generated
by the UAV and natural winds present in the environment.
This phenomenon must be accurately understood because it
can lead to environmental and economic damage and pose
health concerns. Thus, the spraying process must be sensed
to address this problem.

This paper addresses the problem depicted in Fig. 3
concerning the challenges of sensing during spraying. When
sensing the spray, there are instances where the sensors may
fail to detect the spray due to their low resolution and the
small size of the droplets. Additionally, with 3D LiDAR
sensors operating at a sensing frequency of 10 Hz, sensing
may be intermittent in some cases, as illustrated in the Fig. 3.
Furthermore, the spraying process exceeds the detection
range of the sensors in some instances. When intermittent
detection occurs, droplets can be predicted through time-
series data analysis. However, Exceeding the sensing range of
the sensor presents clear limitations. In this study, exceeding
the sensing range of droplets are assumed to have already
occur drift.
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FIGURE 3. Water droplet sensing problem using three-dimensional LiDAR
due to detection range (red circle) and low resolution (red dotted circle).

lIl. SPRAY PERCEPTION SYSTEM

For ideal aerial spraying, precise targeting is essential.
Achieving accurate targeting requires considering the real-
time variations in spray direction due to natural winds. The
current methods, which rely on such techniques as the WSP
or droplet collectors to understand spraying, can provide
comprehensive data regarding the spatial distribution of the
droplets. However, they have limitations in analyzing the
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variability of spraying, particularly concerning changes in
direction or real-time movements (i.e., time-series data).
Consequently, these existing methods cannot adjust spray
techniques when the spray deviates from the intended target
points due to the inability to pinpoint the exact moment when
the spray is affected by the wind dynamics.

Therefore, in addition to the existing methods, time-series
data must be incorporated into the analysis to enhance
precision in aerial spraying. Hence, this paper proposes the
STPAS to improve the accuracy of the aerial spraying control.
The STPAS system is elaborated in Fig. 4, and for further
details are presented in the STPAS flowchart in Fig. 5.

A. DETECTION

Accurate sensing methods are crucial for measuring spray
patterns in precision aerial spraying. Traditionally, equip-
ment used for environmental sensing includes radar or
specialized devices explicitly designed for environmental
monitoring [34]. However, such equipment lacks versatility
and can be prohibitively expensive for integration into UAVs
or real-time data monitoring. Therefore, this study use
3D LiDAR, which is commonly employed in autonomous
driving. This decision is based on the considerations of price
and real-time data communication for spray measurement
under actual environmental conditions.

Short sensing intervals are necessary to detect natural
environments and droplets swiftly, serving as a method to
control UAVs, given the direct communication capability
with the UAVs available in existing systems. Through this
approach, a foundation is laid for real-time UAV control
based on data obtained from 3D LiDAR. Although the
accuracy of the sensor may not match that of sensors
traditionally used in natural environments, the practicality
of 3D LiDAR in real-world applications surpasses the
limitations, even if it cannot provide precise measurements.

Operating at a sensing frequency of 10 Hz, 3D LiDAR
recognizes the existence of all objects in a 3D space in
each frame and represents them as points, forming a point
cloud. Each sensed point contains 3D coordinates, intensity,
and other information. Points are dependent on positional
information; hence, they do not represent specific object
sizes. This study focuses on identifying spray patterns;
thus, a precise observation of droplet sizes is not necessary.
Therefore, rather than observing droplet sizes accurately, the
emphasis is placed on identifying the spray patterns.

B. SPATIAL DATA PROCESSING

In this stage, the process of handling the 3D point cloud of the
spray based on the semantic segmentation PointNet++ [35]
is explained to detect the spray pattern. The data obtained
from the 3D LiDAR comprise point cloud data for all objects,
including droplets. Therefore, it is necessary to separate the
surrounding objects from the droplets. This paper employs
the deep learning PointNet++ model (as shown in Fig. 6) to
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FIGURE 5. Flow chart of the spatial-temporal filtering-based perception and analysis system.

achieve this separation, for the detection and segmentation of
droplets.

PointNet++ is a deep neural network algorithm that
extends the hierarchical structure of PointNet for point
cloud classification and segmentation tasks. The use of
hierarchical structures allows for the gradual abstraction of
larger local regions during exploration. Point cloud sets are
successively reduced in size at each layer, obtaining more
refined and abstract representations at each subsequent stage.
These characteristics of PointNet++ facilitate the capture of
detailed information, making it an ideal choice for analyzing
spray patterns. Therefore, PointNet4++ is employed as the
learning model in this study.

Moreover, PointNet++ consists of two types of density
adaptive layers: multi-scale grouping and multi-resolution
grouping. The layer learns an optimized approach for
merging multi-scale features by employing a random input
dropout with a random probability for each instance. Owing
to the multi-scale grouping operation of a local PointNet over
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a large neighborhood for every centroid, this method incurs
significant computational expense. Two vectors are derived
to address this problem: one by processing all raw points
in the local region and another by selecting features from
each sub-region at a lower abstraction level. Multi-resolution
grouping is processed through a combination of two vectors,
and this method is computationally more efficient because
it circumvents feature extraction from large neighbors at
the lowest level. This process accomplishes segmentation by
extracting only the feature vectors of the spray.

1) SPRAY SEGMENTATION

First, the task of point cloud segmentation was formu-
lated. The point clouds, denoted as P, contain n points
P1,D2s -3 Pn € RY, with d-dimensional features. Each point
p1 comprises coordinates (x;, y;, z;) in 3D space. The set of
class labels is denoted as L. The segmentation of a point cloud
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is the function f, which assigns a class to each point cloud P.
f:P—L" (D)

This paper classifies spray from the point cloud, into
two classes: UAV and spray. For segmentation, a training
dataset was constructed in which the UAV and spray
were labeled. Subsequently, pre-processed data were entered
into PointNet++ for training, and semantic segmentation
was performed. This approach improves the accuracy and
efficiency of the spray data analysis with PointNet++-.

The results derived from the learning model achieve
semantic segmentation of the entire spray pattern. The
spray pattern varies depending on the number and type of
nozzles mounted on the UAV. The spray forms from each
nozzle are different; hence, it is critical to differentiate each
nozzle to sense and classify the spray form more accurately.
Moreover, distinguishing each nozzle enables the possibility
of individually controlling the nozzles on the UAV in the
future. This paper proposes a method based on spatial data
to segment the spray corresponding to each nozzle, aiming
to distinguish the spray from each nozzle. The sections on
clustering, grouping, and temporal filtering below provide
detailed procedures for the classification task.

2) CLUSTERING

Spatial data processing was performed to distinguish the
spray patterns emitted from each nozzle. Unlabeled points in
space were classified using the k-means clustering algorithm.
The k-means clustering algorithm is a well-known clustering
method applied in data processing due to its simplicity in
partitioning the collected data into k groups. With these
characteristics, the k-means clustering algorithm can divide
the data into k groups according to the number of nozzles,
enabling differentiation and analysis of the characteristics of
the spray emitted from each nozzle.

Moreover, k random clusters were generated to cluster
the point cloud, classified as droplets. First, the number of
clusters must be determined. The criterion for determining the
number of clusters depends on the number and distribution of
the nozzles on the UAV. In the UAV in this paper, spraying
was conducted in four regions, with eight nozzles arranged
in pairs of two. Consequently, for this paper, the number
of clusters k was set to four. The clusters C are defined as
follows:

C ={c1,c2,c3, ca). ()

First, the initial centroids must be defined to achieve
optimal clustering performance, which can be randomly set
or manually selected. In this paper, the initial centroids
were randomly set and generated, as depicted in Fig. 7.
This approach is because UAVs always move dynamically
during aerial spraying, making pre-specified cloud heads
unreliable. Therefore, the initial centroids were randomly set
and generated.

The cloud update process proceeds as follows. The sensed
point clouds are assigned to the nearest of the randomly
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selected centroids. In this process, the distances between
centroids and neighboring points are calculated using the
Euclidean distance, and points are clustered to the closest
centroid based on the calculated distances. The function for
clustering is defined as follows:

J= Zklzn:min(’

j=1 i=l

: 2
P =i 3

where n indicates the number of point cloud data, pl@
denotes each point cloud data, and p; represents the centroid
for cluster j. After allocating all provided data to the
clusters, the centroid of each cluster was recalibrated to the
average of the data points within that cluster. The clustering
process, determined by the distance from the updated
centroid and subsequent centroid updates, was repeated until
convergence. Once this process was completed, the average
nozzle positions were determined by the centroids. While
the selected centroids provide information about the central
points of the nozzles, additional processes are still required

to analyze the spray patterns emitted from the nozzles.

3) GROUPING

The k-means clustering algorithm was employed to distin-
guish each nozzle in the spatial data, which involved initially
generating k random centroids to cluster the point cloud.
Grouping by clusters is required after completing the centroid
generation process. The centroids generated using the k-
means clustering algorithm were used for classification and
visualization of the spray patterns emitted from the nozzles.

In this step, this approach performs grouping using Voronoi
diagrams. Voronoi diagrams have a geometric structure that
connects each point in space to the nearest point, adhering to
the proximity rule [36]. Voronoi diagrams divide the entire
space into k subspaces by describing which point in space
is closest to a specific centroid for a given k. However, the
traditional Voronoi diagram has primarily been employed to
segment regions on a two-dimensional plane.

Aerial spraying occurs in 3D space; hence, the partitioning
should consider the actual spray area. Therefore, a 3D space
represented by S = {s1,s2,..., st} was defined, and the
Voronoi diagram was extened into the 3D space. In this
extension, the regions to be partitioned in the expanded space
should not overlap. The non-overlapping 3D Voronoi diagram
was established considering the sensing area of the Voronoi
space. Subsequently, segments connecting the k centroids
obtained from k-means clustering were created. Perpendic-
ular bisecting planes were generated at the midpoints of
these segments. These perpendicular bisecting planes were
projected perpendicularly to the opposite direction of the
reference point, and considering the sensing area, additional
truncation was applied to the box portion, forming 3D
Voronoi cells.

Formally, this can be expressed as follows. The set P =
{p1,p2, p3, ...} isaset of n points in a space S. A 3D Voronoi
diagram (V(G)) generated by the set P partitions S into &k
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regions. First, the centroid of the cluster and the divided
space were calculated to divide the Voronoi space based on
the Euclidean distance between a point g and centroid C as
follows:

d(C,si) = min d(C, q), 4)
C,qEs;

where point g exists within the s; space. The Voronoi space is
defined as follows:

V(si) = {s e R?|d(C,5;) <d(C,s),¥ #i}, (5

where, the Voronoi diagram is V(G) = {V(s1), ..., V(s4)}.
Based on the defined Voronoi diagram, the spray pattern is
grouped at each nozzle, as illustrated in Fig. 8.

C. TEMPORAL FILTERING

Following the process described in the previous section, the
set of points representing the spray was grouped based on
spatial data. However, understanding aerial spraying in real-
time requires consideration of time data. Therefore, this sec-
tion explains the procedure for processing time-series data.
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In this step, time-series data compensate for measurement
errors associated with 3D LiDAR. The measurement errors
of 3D LiDAR, specifically those regarding the shape of the
undetected droplets, are illustrated in Fig. 9. There may
be cases where droplets exist outside the sensing range.
Additionally, in some instances, droplets are within the
sensing range but are temporarily undetected as shown in
Fig. 9. For example, a droplet (p;) may be captured at
t = 1 but the same droplet (p|) may not be detected at
t = 1.1. Subsequently, at t = 1.2, the same droplet (p/)
may suddenly be detected along the droplet trajectory. This
occurrence indicates that, although still sprayed into the air,
droplets may not be detected due to the low accuracy of the
sensor. Therefore, a process to complement this is required.

O Undetected Droplet
O Detected Droplet
Nozzle
t=1s
Spray
/ o\
ya 'O.\\
L9 9%
A0 @ "0, 7NN
/ | L y 2o @\ p! s ;7 @ 2 v.'i\\ ’
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FIGURE 9. Problem of water droplets temporarily undetected within the
detection range.

This paper implemented a filtering process based on the
Kalman filter to solve the measurement error problem. The
Kalman filter is used to estimate the state of a linear dynamic
system based on measurements that contain noise. Therefore,
it is suitable for such applications as aerial spraying where
information from 3D LiDAR measurements may not be
entirely accurate.

As depicted in Fig. 9, the trajectory of a specific water
droplet can be predicted based on the previously measured
p1 and pf using the Kalman filter. Then, the undetected
droplet (p}) can be compensated by predicted trajectory.
Through this process, it is possible to compensate for
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undetectable water droplets. The process of enhancing
droplet tracking based on the Kalman filter is as follows.

The predicted ith point cloud of the spraying (s) at discrete
time m is

S‘mlmfl = A§m,1|m,1 + By, (6)

where 5;,m—1 denotes the predicted spraying state, A is the
state transition model, B,, represents the control input, and u,,
indicates the control vector. The actual spray measurements
from the 3D LiDAR sensor at m are as follows:

im = ngmlm—l + Wi, @)

where H,,5 represents the observation operator, and wy,
denotes the observation noise. The error covariance predic-
tion is formulated as follows:

Pujm—1 = APp_1jm—1AT + 0, ®)

where Q represents the process noise covariance. The Kalman
gain, which determines the weight assigned to the recent
measurement, is as follows:

Kn = Pupm—1H" (HPpym—1H" + R, )

where R denotes the measurement noise covariance. Then, the
state is updated as follows:

3m|m = §m|m—l + Kn(zm — Hgmlm—l)» (10)
Moreover, the updated error covariance is as follows:
Pm\m = Pm|m—1 - KmHPm\m—l- (11)

For all acquired point cloud data, the calculations are
updated with system equations, and estimations are per-
formed at specified intervals. A more accurate spray form can
be achieved by predicting and estimating the point cloud for
each previously classified nozzle.

Nozzle V
P!

FIGURE 10. Performance measurement; a nozzle is evaluated by
maximum distance (dmax), spray volume (vs), and mean volume median
diameter (VMDmean)-

IV. ANALYSIS

The evaluation metrics for STPAS are selected to analyze
the spray pattern. In this process, analyzing the spray
performance focuses on identifying the spray pattern and
quantitatively evaluating it. The spray performance measure-
ment is defined in Fig. 10. The spray trajectory emitted from
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the nozzle is determined by the type of nozzle. A flat-fan
nozzle was employed in this work. Hence, the length of the
lateral line of the cone and the circumference of the base of
the cone are critical to reconstruct the shape. The lateral line
length is obtained from the maximum spray distance, whereas
the circumference of the base is estimated. The circumference
of the base is obtained proportionally to the distance from
the maximum distance to the central diameter, allowing the
model to obtain a conical shape. The Performance metrics
are defined as follows:
1) Maximum distance (d;qyx):

I

Amax = Hpclose — Pfar| > (12)

where p.ipse denotes the closest point to the centroid, and
Dfar marks the farthest point from the centroid, enabling an
assessment of the extent to which the spray was scattered.
Analyzing the maximum spray distance in the hovering
state using the calculated evaluation index provides valuable
information, serving as a parameter guiding the UAV
movement during precision aerial spray control or when
adjusting the spray nozzle direction.
2) Spray volume (vy):

n
Vs = Zpspray.h (13)
i

where p consists of spray point clouds. The spray volume is
determined by the number of point clouds classified as pgpray,
allowing an assessment of the quantity of scattered spray.
Using the calculated evaluation index (assuming the UAV is
hovering) enables the analysis of the current volume of spray
released from the nozzle. Consequently, PWM control can be
performed by adjusting the nozzle or pump mounted on the
UAV. Notably, pertinent information can be extracted from
each nozzle, serving as data for individually controlling the
nozzles and pumping from the same nozzles mounted on the
UAV.
3) Mean volume median diameter (VMD,,eqn)

1
VMDpean = - D (@x + By +yz+2),  (14)

where x, y, and z are determined based on the positions
of the nozzle and UAV relative to the floor. A regression
model was employed to represent the central diameter of the
spray. The model was obtained through machine learning.
In the formula, «, 8, y, and X are distance-dependent coef-
ficients determined through numerical experiments. These
coefficients were empirically determined using data obtained
while hovering at 3 m, with the corresponding parameters set
to o is 15.38, B is 15.38, y is -9.40, and A is 158.22.

The VMD can be employed to estimate the 3D cone shape.
First, the length of the side of the cone is obtained using
the point cloud (i.e., centroid) closest to the nozzle location
and the point cloud farthest away. Then, the 3D cone can be
estimated using the central diameter of the cone through the
VMD.
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FIGURE 11. Aerial spray system with an embedded system capable of
real-time recognition.

FIGURE 12. Capture of the experiment scene.

FIGURE 13. Capture of the experiment scene; red points represent a
droplet, blue points represent a UAV, and white line represents a ground.

V. EXPERIMENT

A. EXPERIMENTAL SETUP

The aerial spray system is illustrated in Fig. 11. This study
uses the Agras T16 model, equipped with eight nozzles. A
3D LiDAR sensor was mounted on a UAV to evaluate and
analyze the spray pattern of the installed nozzles in this
model. The UAV was equipped with a mini-computer, and the
system was built so that all processing occurs onboard. The
sensor placement was determined considering the detection

VOLUME 12, 2024

range and operational conditions of the UAV, allowing it to
detect the shape of the water droplets sprayed by the UAV in
real-time.

However, placing the LiDAR at the central position to
cover the entire area resulted in the loss of droplet detection
in certain regions. Therefore, in this experiment, the 3D
LiDAR sensor was strategically positioned closer to one
side to ensure adequate coverage of a specific area while
addressing the challenge of potential loss in the central
region. Experiments were conducted using four nozzles on
one side using this strategy.

The experiments were conducted to analyze the spray
shape and characteristics in real-time according to the driving
flight conditions of the UAYV, as shown in Fig. 12, which were
as follows:

1) Flight altitude (2 m, 3 m, and 4 m)

2) Flight velocity (1 m/s, 1.5 m/s, and 2 m/s)

According to the results [37], the maximum flight
altitude should not exceed 2.5 m to minimize the drift
of water droplets. Based on this result, the experimental
conditions were determined by varying the driving conditions
from 2 to 4 m. Additionally, the altitude was fixed at 3 m and
the speeds were 1, 1.5, and 2 m/s.

B. EXPERIMENTAL RESULTS

The point cloud was segmented and classified into two
classes. The overall accuracy, precision, and recall of the
trained deep learning model were 99.4 %, 94.1 %, and 97.7 %,
respectively. In addition, Fig. 13 depicts a snapshot of the
real-time spray measurements taken during aerial spraying.
The LiDAR sensor captures data at 10 Hz, enabling the
monitoring and analysis of the spray pattern at 0.1-s intervals.
As illustrated in Fig. 13, the evolving spray shape over time
and the influence of the wind can be observed through the
visualized data.

The spray measurement results are outlined according to
the described method. Observing the initial unprocessed data
state reveals numerous data oscillations over time, which
are attributed to the calculation, including the noise in the
unfiltered raw data, as depicted in Figs. 14-17(a). The graph,
when filtered using the proposed method, is presented in
Figs. 14-17(b). As depicted in Figs. 14 and 15(b), in the case
of Nozzle 1, the maximum distance tends to increase with
higher altitudes. The expansion of the maximum distance
implies a broader spray range, posing challenges in achieving
more precise spray control. Therefore, spraying at a lower
altitude allows for more precise targeting. However, lower
altitudes bring the UAV closer to the crops, potentially
increasing the influence of downward wind on the crops,
which could affect them. For Nozzle 2, no variation in height
and velocity occurs, indicating that no distinct spray control
is required, as illustrated in Figs. 14 and 15(b).

In the case of spray volume, Nozzle 1 tended to have
a similar distribution regardless of the height, as depicted
in Fig. 14(a), suggesting that the spray volumes are similar
because the spray pressure does not change. However,
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FIGURE 14. Experimental results for Nozzle 1: (a) original and (b) filtered maximum distance.
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FIGURE 15. Experimental results for Nozzle 1: (a) original and (b) filtered spray volume.
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FIGURE 16. Experimental results for Nozzle 2: (a) original and (b) filtered maximum distance.
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FIGURE 17. Experimental results for Nozzle 2: (a) original and (b) filtered spray volume.

for speed, the volume tended to increase as the speed
increased, which may be because more spray was measured
in conjunction with the sensing cycle, depending on the
progress speed. Additionally, due to the influence of wind,
water droplets sprayed from the surrounding nozzles may
be included in the measurement. This phenomenon is not
a measurement problem; however, it is a problem that can
occur in actual applications. For Nozzle 2, a relatively minor
change occurred in the height, however the speed displays
a significant increase at 9 s, as indicated in Fig. 16(b).
These results also suggest that the measured volume may be
expected to increase due to the influence of wind, indicating a
need for control in this case. No significant change occurred
in the maximum distance, as depicted in Fig. 17(b).

These results enable real-time feedback control because
they provide insight into the performance of each nozzle.
The following section briefly discusses how the analysis
results from the experiments can be used for real-time control.
Additionally, the limitations of future precise aerial spray
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systems are presented, and additional solutions are proposed
to ensure effective real-time control.

VI. DISCUSSION

This section discusses the primary challenge to consider for
precise aerial spray control. More research and development
have focused on ground spray systems than aerial spray
systems, resulting in sufficient commercialization of ground-
based spray platforms. The platforms for ground sprayers are
standardized; thus research has been underway for ground
spray systems on these platforms, with efforts to apply
and integrate these systems. However, aerial spray systems
have only recently begun to be applied in agriculture. The
development of platforms for aerial sprayers has focused
on improving location accuracy, autonomous control, and
environmental sensing devices. Research on control systems
for spray applications has been neglected, with more
instances of simple tests being conducted using existing
UAVs. Therefore, research on control systems that consider
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real-time dynamic situations, environmental variables, and
other factors is necessary.

Another problem is the insufficient explanation or select-
ing an appropriate nozzle based on the rotor downwash
flow field in the literature, despite its importance in aerial
spray systems [38]. Moreover, choosing anti-drift nozzles
to achieve control over target crops may lead to decreased
spray coverage. Therefore, the nozzle design is a crucial
factor that facilitates spraying the target crop, and the trade-
off between spraying performance and the reachability of the
target crop must be managed effectively. Centrifugal nozzles
have strengths in terms of spray volume and coverage area.
However, wide spray coverage area may not be suitable
for precise spraying methods. Because, to achieve a wide
coverage, the increased number of water droplets sprayed
from the nozzle reduces the straightness of droplets direction,
thereby increasing the possibility of drift. Flat fan nozzles
is reduced spray usage and improved linearity of spray
moving direction, thereby decreasing the control complexity
of precise spray systems. Furthermore, due to the lower spray
volume compared to centrifugal separation nozzles, the risk
of drift caused by wind may be reduced. Therefore, utilizing
flat fan nozzles is expected to enable the establishment of a
precise spray system.

VIl. CONCLUSION

This study proposes a perception and analysis method for
precise aerial spraying based on 3D deep learning. Point
cloud data were acquired for water droplets using a 3D
LiDAR sensor and deep learning models trained using
PointNet++ to classify and segment the spray pattern.
Spatial-temporal data processing was performed for the
segmented point cloud data. The spray was clustered from
each nozzle based on this information using spatial data
processing, allowing each nozzle to be distinguished and
mapped. Temporal data processing addressed the undetected
or noise points and predicted the water-droplet trajectory to
enhance the spray data. This approach more accurately mea-
sures the water droplet shape. Experiments were conducted
to validate the proposed framework by altering UAV flight
conditions, demonstrating the feasibility of the method for
the UAV onboard system. This approach secures the potential
application of the proposed method in control systems for
precise spraying in the future.
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